Part Number Hot Search : 
MBZ5234B 2N1054 AD7393AR AT220 LLBAT42 23PN010 A332J TOP246
Product Description
Full Text Search
 

To Download XMC4500-F100X1024 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  data sheet v1.4 2016-01 microcontrollers xmc4500 microcontroller series for industrial applications xmc4000 family arm ? cortex ? -m4 32-bit processor core
edition 2016-01 published by infineon technologies ag 81726 munich, germany ? 2016 infineon technologies ag all rights reserved. legal disclaimer the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any ex amples or hints given herein, any typi cal values stated herein and/or any information regarding the application of the device, infi neon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. infineon technologies components may be used in life-suppo rt devices or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
data sheet v1.4 2016-01 microcontrollers xmc4500 microcontroller series for industrial applications xmc4000 family arm ? cortex ? -m4 32-bit processor core
xmc4500 xmc4000 family data sheet v1.4, 2016-01 trademarks c166?, tricore?, xmc? and dave? are trademarks of infineon technologies ag. arm ? , arm powered ? , cortex ? , thumb ? and amba ? are registered trademarks of arm, limited. coresight?, etm?, embedded trace macrocell? and embedded trace buffer? are trademarks of arm, limited. synopsys? is a trademark of synopsys, inc. xmc4500 data sheet revision history: v1.4 2016-01 previous versions: v1.3, 2014-03 v1.2, 2013-07 v1.1, 2013-07 v1.0, 2013-01 v0.9, 2012-12 v0.8, 2012-11 page subjects 43 added information that porst pull-up is identical to the pull-up on standard i/o pins. 42 added footnote explaining minimum v bat requirements to start the hibernate domain and/or oscillat ion of a crystal on rtc_xtal. 59 corrected parameter name of of usb pu ll device (upstream port receiving) definition according to usb standard (referenced to dm instead of dp) 61 relaxed rtc_xtal v ppx parameter value and changed it to a system requirement. 115 ff added pg-lqfp-100-25 and pg-lqfp-144-24 package information. 115 added tables describing the differ ences between pg-lqfp-100-11 to pg- lqfp-100-25 as well as pg-lqfp-144-18 to pg-lqfp-144-24 packages. we listen to your comments is there any information in this document that you feel is wrong, unclear or missing? your feedback will help us to continuousl y improve the quality of this document. please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com subject to agreement on the use of product information
xmc4500 xmc4000 family table of contents data sheet 5 v1.4, 2016-01 table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 about this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 summary of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 device types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 device type features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 definition of feature variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 identification registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 general device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 logic symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 pin configuration and definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 package pin summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 port i/o functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.2.1 port i/o function table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 power connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1 general parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 parameter interpretati on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.3 pin reliability in overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 pad driver and pad classes summary . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.5 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 dc parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 input/output pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.2 analog to digital converters (vadc) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.3 digital to analog converters (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.4 out-of-range comparator (orc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.5 die temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.6 usb otg interface dc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.7 oscillator pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2.8 power supply current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.9 flash memory parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1 testing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.2 power-up and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.3 power sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.4 phase locked loop (pll) characteristics . . . . . . . . . . . . . . . . . . . . . . 73 3.3.5 internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table of contents subject to agreement on the use of product information
xmc4500 xmc4000 family table of contents data sheet 6 v1.4, 2016-01 3.3.6 jtag interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.7 serial wire debug port (sw-dp) timing . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3.8 embedded trace macro cell (etm) timing . . . . . . . . . . . . . . . . . . . . . 79 3.3.9 peripheral timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.9.1 delta-sigma demodulator digital interf ace timing . . . . . . . . . . . . . . 80 3.3.9.2 synchronous serial interface (usic ssc) timing . . . . . . . . . . . . . . 81 3.3.9.3 inter-ic (iic) interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.9.4 inter-ic sound (iis) interface timing . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3.9.5 sdmmc interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.10 ebu timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.3.10.1 ebu asynchronous timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.3.10.2 ebu burst mode access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.10.3 ebu arbitration signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 3.3.10.4 ebu sdram access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.3.11 usb interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 3.3.12 ethernet interface (eth) characteristics . . . . . . . . . . . . . . . . . . . . . . . 111 3.3.12.1 eth measurement reference points . . . . . . . . . . . . . . . . . . . . . . . 111 3.3.12.2 eth management signal parameters (eth_mdc, eth_mdio) . . 112 3.3.12.3 eth mii parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.3.12.4 eth rmii parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4 package and reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1 package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.1 thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3 quality declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 subject to agreement on the use of product information
xmc4500 xmc4000 family about this document data sheet 7 v1.4, 2016-01 about this document this data sheet is addressed to embedded hardware and software developers. it provides the reader with detailed description s about the ordering designations, available features, electrical and physical characte ristics of the xmc4500 series devices. the document describes the characteristi cs of a superset of the xmc4500 series devices. for simplicity, the various device types are referred to by the collective term xmc4500 throughout this manual. xmc4000 family user documentation the set of user documentation includes: ? reference manual ? decribes the functionality of the superset of devices. ? data sheets ? list the complete ordering designations, available features and electrical characteristics of derivative devices. ? errata sheets ? list deviations from the specifications given in the related reference manual or data sheets. errata sheets are provided for the superset of devices. attention: please consult all parts of the documentation set to attain consolidated knowledge about your device. application related guidance is provided by users guides and application notes . please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents. subject to agreement on the use of product information
xmc4500 xmc4000 family summary of features data sheet 8 v1.4, 2016-01 1 summary of features the xmc4500 devices are members of the xm c4000 family of microcontrollers based on the arm cortex-m4 processor core. the xmc4000 is a family of high performance and energy efficient microcontrollers optimi zed for industrial connectivity, industrial control, power conversion, sense & control. figure 1 system block diagram cpu subsystem ?cpu core ? high performance 32-bit arm cortex-m4 cpu ? 16-bit and 32-bit thumb2 instruction set ? dsp/mac instructions ? system timer (systick) fo r operating system support ? floating point unit ? memory protection unit ? nested vectored interrupt controller ? two general purpose dma with up-to 12 channels ? event request unit (eru) for programmab le processing of external and internal service requests pmu rom & flash bus matrix cpu arm cortex-m4 dsram1 ebu dsram2 psram fce gpdma0 gpdma1 usb otg ethernet dcode system icode peripherals 0 peripherals 1 pba0 data code wdt rtc eru0 scu eru1 vadc posif0 ccu40 ccu41 ccu42 usic0 dsd posif1 ccu80 ccu81 ledts0 ccu43 ports dac sdmmc usic2 usic1 can system masters system slaves pba1 subject to agreement on the use of product information
xmc4500 xmc4000 family summary of features data sheet 9 v1.4, 2016-01 ? flexible crc engine (fce) for multiple bit e rror detection on-chip memories ? 16 kb on-chip boot rom ? 64 kb on-chip high-speed program memory ? 64 kb on-chip high speed data memory ? 32 kb on-chip high-speed communication ? 1024 kb on-chip flash memory with 4 kb instruction cache communication peripherals ? ethernet mac module capable of 10/100 mbit/s transfer rates ? universal serial bus, usb 2.0 host, full-speed otg, with integrated phy ? controller area network interface (multican ), full-can/basic-can with 3 nodes, 64 message objects (mo), data rate up to 1mbit/s ? six universal serial interface channels (usic),providing 6 serial channels, usable as uart, double-spi, quad-spi, ii c, iis and lin interfaces ? led and touch-sense controller (ledts) for human-machine interface ? sd and multi-media card interface (s dmmc) for data storage memory cards ? external bus interface unit (ebu) enabl ing communication with external memories and off-chip peripherals analog frontend peripherals ? four analog-digital converters (vadc) of 12-bit resolution, 8 channels each, with input out-of-range comparators ? delta sigma demodulator with four chann els, digital input stage for a/d signal conversion ? digital-analogue converter (dac) with two channels of 12-bit resolution industrial control peripherals ? two capture/compare units 8 (ccu8) for motor control and power conversion ? four capture/compare units 4 (ccu4) for use as general purpose timers ? two position interfaces (posif) for servo motor positioning ? window watchdog timer (wdt) for safety sensitive applications ? die temperature sensor (dts) ? real time clock module with alarm support ? system control unit (scu) for system configuration and control subject to agreement on the use of product information
xmc4500 xmc4000 family summary of features data sheet 10 v1.4, 2016-01 input/output lines ? programmable port driver control module (ports) ? individual bit addressability ? tri-stated in input mode ? push/pull or open drain output mode ? boundary scan test support over jtag interface on-chip debug support ? full support for debug features: 8 breakpoints, coresight, trace ? various interfaces: arm-jtag, swd, single wire trace 1.1 ordering information the ordering code for an infineon microcontroller provides an exact reference to a specific product. the code ?xmc4< ddd>-? identifies: ? the derivatives function set ? the package variant ?e: lfbga ?f: lqfp ?q: vqfn ? package pin count ? the temperature range: ? f: -40c to 85c ? x: -40c to 105c ? k: -40c to 125c ? the flash memory size. for ordering codes for the xmc4500 please c ontact your sales representative or local distributor. this document describes several derivatives of the xmc4500 series, some descriptions may not apply to a specific product. for simplicity the term xmc4500 is used for all derivatives throughout this document. subject to agreement on the use of product information
xmc4500 xmc4000 family summary of features data sheet 11 v1.4, 2016-01 1.2 device types these device types are available and can be ordered through infineon?s direct and/or distribution channels. 1.3 device type features the following table lists the avai lable features per device type. table 1 synopsis of xmc4500 device types derivative 1) 1) x is a placeholder for the supported temperature range. package flash kbytes sram kbytes xmc4500-e144x1024 pg-lfbga-144 1024 160 xmc4500-f144x1024 pg-lqfp-144 1024 160 XMC4500-F100X1024 pg-lqfp-100 1024 160 xmc4500-f144x768 pg-lqfp-144 768 160 xmc4500-f100x768 pg-lqfp-100 768 160 xmc4502-f100x768 pg-lqfp-100 768 160 xmc4504-f144x512 pg-lqfp-144 512 128 xmc4504-f100x512 pg-lqfp-100 512 128 table 2 features of xmc4500 device types derivative 1) ledts intf. sdmmc intf. ebu intf. 2) eth intf. 3) usb intf. usic chan. multican nodes, mo xmc4500-e144x1024 1 1 sdm mr 1 3 x 2 n0, n1, n2 mo[0..63] xmc4500-f144x1024 1 1 sdm mr 1 3 x 2 n0, n1, n2 mo[0..63] XMC4500-F100X1024 1 1 m16 r 1 3 x 2 n0, n1, n2 mo[0..63] xmc4500-f144x768 1 1 sdm mr 1 3 x 2 n0, n1, n2 mo[0..63] xmc4500-f100x768 1 1 m16 r 1 3 x 2 n0, n1, n2 mo[0..63] xmc4502-f100x768 1 1 m16 - 1 3 x 2 n0, n1, n2 mo[0..63] subject to agreement on the use of product information
xmc4500 xmc4000 family summary of features data sheet 12 v1.4, 2016-01 1.4 definition of feature variants the xmc4500 types are offered with several memory sizes and number of available vadc channels. table 4 describes the location of the available flash memory, table 5 describes the location of the available srams, table 6 the available vadc channels. xmc4504-f144x512 1 1 sdm - - 3 x 2 - xmc4504-f100x512 1 1 m16 - - 3 x 2 - 1) x is a placeholder for the supported temperature range. 2) memory types supported s=sdram, d=demux, m=mux 16-bit and 32-bit, m16=mux 16-bit 3) supported interfaces, m=mii, r=rmii. table 3 features of xmc4500 device types derivative 1) 1) x is a placeholder for the supported temperature range. adc chan. dsd chan. dac chan. ccu4 slice ccu8 slice posif intf. xmc4500-e144x1024 32 4 2 4 x 4 2 x 4 2 xmc4500-f144x1024 32 4 2 4 x 4 2 x 4 2 XMC4500-F100X1024 24 4 2 4 x 4 2 x 4 2 xmc4500-f144x768 32 4 2 4 x 4 2 x 4 2 xmc4500-f100x768 24 4 2 4 x 4 2 x 4 2 xmc4502-f100x768 24 4 2 4 x 4 2 x 4 2 xmc4504-f144x512 32 4 2 4 x 4 2 x 4 2 xmc4504-f100x512 24 4 2 4 x 4 2 x 4 2 table 4 flash memory ranges total flash size cached range uncached range 512 kbytes 0800 0000 h ? ? table 2 features of xmc4500 device types (cont?d) derivative 1) ledts intf. sdmmc intf. ebu intf. 2) eth intf. 3) usb intf. usic chan. multican nodes, mo subject to agreement on the use of product information
xmc4500 xmc4000 family summary of features data sheet 13 v1.4, 2016-01 1.5 identification registers the identification registers allow software to identify the marking. 768 kbytes 0800 0000 h ? ? ? ? table 5 sram memory ranges total sram size program sram system data sram communication data sram 128 kbytes 1000 0000 h ? ? ? ? ? ? table 6 adc channels 1) 1) some pins in a package may be connected to more than one channel. for the detailed mapping see the port i/o function table. package vadc g0 vadc g1 vadc g2 vadc g3 pg-lqfp-144 pg-lfbga-144 ch0..ch7 ch0..ch7 ch0..ch7 ch0..ch7 pg-lqfp-100 ch0..ch7 ch0..ch7 ch0..ch3 ch0..ch3 table 7 xmc4500 identi fication registers register name value marking scu_idchip 0004 5002 h ees-aa, es-aa scu_idchip 0004 5003 h es-ab, ab scu_idchip 0004 5004 h ac jtag idcode 101d b083 h ees-aa, es-aa jtag idcode 101d b083 h es-ab, ab jtag idcode 401d b083 h ac table 4 flash memory ranges (cont?d) total flash size cached range uncached range subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 14 v1.4, 2016-01 2 general device information this section summarizes the logic symbols and package pin configurations with a detailed list of the functional i/o mapping. 2.1 logic symbols figure 2 xmc4500 logic symbol pg-lqfp-144 port 0 16 bit port 1 16 bit port 2 16 bit port 3 16 bit port 4 8 bit port 5 12 bit port 6 7 bit v agnd (1) v aref (1) v ddp (4) jtag 3 bit tck etm / swd 5 / 1 bit v ddc (4) xtal1 xtal2 usb_dp usb_dm vbus port 14 14 bit port 15 12 bit tms porst via port pins v dda (1) rtc_xtal1 rtc_xtal2 hib_io_0 hib_io_1 v ssa (1) v bat (1) (1) v sso exp. die pad (v ss ) v ss (1) subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 15 v1.4, 2016-01 figure 3 xmc4500 logic symbol pg-lfbga-144 port 0 16 bit port 1 16 bit port 2 16 bit port 3 16 bit port 4 8 bit port 5 12 bit port 6 7 bit v agnd (1) v aref (1) v ddp (3) jtag 3 bit tck etm / swd 5 / 1 bit v ddc (3) xtal1 xtal2 usb_dp usb_dm vbus port 14 14 bit port 15 12 bit tms porst via port pins v dda (1) rtc_xtal1 rtc_xtal2 hib_io_0 hib_io_1 v ssa (1) v bat (1) (1) v sso v ss (3) subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 16 v1.4, 2016-01 figure 4 xmc4500 logic symbol pg-lqfp-100 port 0 13 bit port 1 16 bit port 2 13 bit port 3 7 bit port 4 2 bit port 5 4 bit v agnd (1) v aref (1) v ddp (4) jtag 3 bit tck swd 1 bit v ddc (4) xtal1 xtal2 usb_dp usb_dm vbus port 14 14 bit port 15 4 bit tms porst via port pins v dda (1) rtc_xtal1 rtc_xtal2 hib_io_0 hib_io_1 v ssa (1) v bat (1) (1) v sso exp. die pad (v ss ) v ss (1) subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 17 v1.4, 2016-01 2.2 pin configuration and definition the following figures summarize all pins, showing their locations on the four sides of the different packages. figure 5 xmc4500 pg-lqfp-144 pin configuration (top view) 2 p0 . 0 1 p0 . 1 14 4 p 0 .2 14 3 p 0 .3 14 2 p 0 .4 14 1 p 0 .5 14 0 p 0 .6 12 8 p 0 .7 12 7 p 0 .8 4 p0 . 9 3 p0 . 1 0 13 9 p 0 .1 1 138 p0.12 137 p0.13 13 6 p 0 .1 4 135 p0.15 11 2 p 1 .0 11 1 p 1 .1 110 p1.2 10 9 p 1 .3 108 p1.4 107 p1.5 11 6 p 1 .6 11 5 p 1 .7 11 4 p 1 .8 11 3 p 1 .9 106 p1.10 105 p1.11 104 p1.12 103 p1.13 102 p1.14 94 p1.15 74 p2.0 73 p2.1 72 p2.2 71 p2.3 70 p2.4 69 p2.5 76 p2.6 75 p2.7 68 p2.8 67 p2.9 66 p2.10 65 p2.11 64 p2.12 63 p2.13 60 p2.14 59 p2.15 7 p3 . 0 6 p3 . 1 5 p3 . 2 13 2 p 3 .3 13 1 p 3 .4 13 0 p 3 .5 12 9 p 3 .6 14 p3 . 7 13 p3 . 8 12 p3 . 9 11 p3 . 1 0 10 p3 . 1 1 9 p3 . 1 2 8 p3 . 1 3 13 4 p 3 .1 4 13 3 p 3 .1 5 124 p4.0 123 p4.1 12 2 p 4 .2 12 1 p 4 .3 12 0 p 4 .4 11 9 p 4 .5 11 8 p 4 .6 11 7 p 4 .7 84 p5.0 83 p5.1 82 p5.2 81 p5.3 80 p5.4 79 p5.5 78 p5.6 77 p5.7 58 p5.8 57 p5.9 56 p5.10 55 p5.11 101 p6.0 100 p6.1 99 p6.2 98 p6.3 97 p6.4 96 p6.5 95 p6.6 42 p14.0 41 p14.1 40 p14.2 39 p14.3 38 p14.4 37 p14.5 36 p14.6 35 p14.7 52 p14.8 51 p14.9 34 p14.12 33 p14.13 32 p14.14 31 p14.15 30 p15.2 29 p15.3 28 p15.4 27 p15.5 26 p15.6 25 p15.7 54 p15.8 53 p15.9 50 p15.12 49 p15.13 44 p15.14 43 p15.15 16 usb_dp 15 usb _dm 21 hib_io _0 20 hib_io _1 93 tck 92 tms 91 porst 87 xtal1 88 xtal2 22 rtc_xtal1 23 rtc_xtal2 24 vbat 17 vbus 46 va r ef 45 vagnd 48 vd d a 47 vssa 19 vddc 61 vddc 90 vddc 12 5 v d d c 18 vddp 62 vd d p 86 vddp 12 6 v d d p 85 vss 89 vsso xmc4500 (top view) subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 18 v1.4, 2016-01 figure 6 xmc4500 pg-lfbga-144 pin configuration (top view) p0.0 p0.1 p0.2 p0.3 p0.4 p0.5 p0.6 p0.7 p0.8 p0.9 p0.10 p0.11 p0.12 p0.13 p0.14 p0.15 p1.0 p1.1 p1.2 p1.3 p1.4 p1.5 p1.6 p1.7 p1.8 p1.9 p1.10 p1.11 p1.12 p1.13 p1.14 p1.15 p2.0 p2.1 p2.2 p2.3 p2.4 p2.5 p2.6 p2.7 p2.8 p2.9 p2.10 p2.11 p2.12 p2.13 p2.14 p2.15 p3.0 p3.1 p3.2 p3.3 p3.4 p3.5 p3.6 p3.7 p3.8 p3.9 p3.10 p3.11 p3.12 p3.13 p3.14 p3.15 p4.0 p4.1 p4.2 p4.3 p4.4 p4.5 p4.6 p4.7 p5.0 p5.1 p5.2 p5.3 p5.4 p5.5 p5.6 p5.7 p5.8 p5.9 p5.10 p5.11 p6.0 p6.1 p6.2 p6.3 p6.4 p6.5 p6.6 p14.0 p14.1 p14.2 p14.3 p14.4 p14.5 p14.6 p14.7 p14.8 p14.9 p14.12 p14.13 p14.14 p14.15 p15.2 p15.3 p15.4 p15.5 p15.6 p15.7 p15.8 p15.9 p15.12 p15.13 p15.14 p15.15 usb_d p usb_d m hib_i o_0 hib_i o_1 tck tms porst xtal1 xtal2 rtc_x ta l1 rtc_x ta l2 vbat vbus varef vagnd vdda vssa vddc vddc vddc vddp vddp vddp vss vss vss vsso 123456789101112 123456789101112 a b c d e f g h j k l m a b c d e f g h j k l m xmc4500 - (top view) subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 19 v1.4, 2016-01 figure 7 xmc4500 pg-lqfp-100 pin configuration (top view) 2 p0 . 0 1 p0 . 1 10 0 p 0 .2 99 p0.3 98 p0.4 97 p0.5 96 p0.6 89 p0.7 88 p0.8 4 p0 . 9 3 p0 . 1 0 95 p0.11 94 p0.12 79 p1.0 78 p1.1 77 p1.2 76 p1.3 75 p1.4 74 p1.5 83 p1.6 82 p1.7 81 p1.8 80 p1.9 73 p1.10 72 p1.11 71 p1.12 70 p1.13 69 p1.14 68 p1.15 52 p2.0 51 p2.1 50 p2.2 49 p2.3 48 p2.4 47 p2.5 54 p2.6 53 p2.7 46 p2.8 45 p2.9 44 p2.10 41 p2.14 40 p2.15 7 p3 . 0 6 p3 . 1 5 p3 . 2 93 p3.3 92 p3.4 91 p3.5 90 p3.6 85 p4.0 84 p4.1 58 p5.0 57 p5.1 56 p5.2 55 p5.7 31 p14.0 30 p14.1 29 p14.2 28 p14.3 27 p14.4 26 p14.5 25 p1 4. 6 24 p1 4. 7 37 p14.8 36 p14.9 23 p1 4 . 1 2 22 p1 4 . 1 3 21 p1 4 . 1 4 20 p1 4 . 1 5 19 p1 5. 2 18 p1 5. 3 39 p15.8 38 p15.9 9 usb_dp 8 usb _dm 14 hib_io _0 13 hib_io _1 67 tck 66 tms 65 porst 61 xtal1 62 xtal2 15 rtc_xtal1 16 rtc_xtal2 17 vbat 10 vbus 33 va r ef 32 vagnd 35 vd d a 34 vssa 12 vddc 42 vddc 64 vddc 86 vddc 11 vddp 43 vd d p 60 vddp 87 vddp 59 vss 63 vsso xmc4500 (top view) subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 20 v1.4, 2016-01 2.2.1 package pin summary the following general scheme is used to describe each pin: the table is sorted by the ?function? column, starting with the regular port pins (px.y), followed by the dedicated pins (i.e. porst ) and supply pins. the following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package. the ?pad type? indicates the employed pad type (a1, a1+, a2, special=special pad, in=input pad, an/dig_in=analog and digital input, power=power supply). details about the pad properties are defined in the electrical parameters. in the ?notes?, special information to the res pective pin/function is given, i.e. deviations from the default configuration after reset. per default the regular port pins are configured as direct input with no internal pull device active. table 8 package pin mapping description function package a package b ... pad type notes name n ax ... a2 table 9 package pin mapping function lqfp-144 lfbga-144 lqfp-100 pad type notes p0.0 2 c4 2 a1+ p0.1 1 c3 1 a1+ p0.2 144 a3 100 a2 p0.3 143 a4 99 a2 p0.4 142 b5 98 a2 p0.5 141 a5 97 a2 p0.6 140 a6 96 a2 p0.7 128 b7 89 a2 after a system reset, via hwsel this pin selects the db.tdi function. p0.8 127 a8 88 a2 after a system reset, via hwsel this pin selects the db.trst function, with a weak pull-down active. p0.9 4 d4 4 a2 p0.10 3 b4 3 a1+ subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 21 v1.4, 2016-01 p0.11 139 e5 95 a1+ p0.12 138 d5 94 a1+ p0.13 137 c5 - a1+ p0.14 136 e6 - a1+ p0.15 135 c6 - a1+ p1.0 112 d9 79 a1+ p1.1 111 e9 78 a1+ p1.2 110 c11 77 a2 p1.3 109 c12 76 a2 p1.4 108 c10 75 a1+ p1.5 107 d10 74 a1+ p1.6 116 b9 83 a2 p1.7 115 b10 82 a2 p1.8 114 a10 81 a2 p1.9 113 b11 80 a2 p1.10 106 d12 73 a1+ p1.11 105 d11 72 a1+ p1.12 104 e11 71 a2 p1.13 103 e12 70 a2 p1.14 102 e10 69 a2 p1.15 94 g12 68 a2 p2.0 74 j11 52 a2 p2.1 73 k12 51 a2 after a system reset, via hwsel this pin selects the db.tdo function. p2.2 72 k11 50 a2 p2.3 71 l11 49 a2 p2.4 70 l10 48 a2 p2.5 69 m10 47 a2 p2.6 76 j9 54 a1+ p2.7 75 k9 53 a1+ p2.8 68 l9 46 a2 p2.9 67 m9 45 a2 table 9 package pin mapping (cont?d) function lqfp-144 lfbga-144 lqfp-100 pad type notes subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 22 v1.4, 2016-01 p2.10 66 l8 44 a2 p2.11 65 m8 - a2 p2.12 64 l7 - a2 p2.13 63 m7 - a2 p2.14 60 k7 41 a2 p2.15 59 j6 40 a2 p3.0 7 c1 7 a2 p3.1 6 b2 6 a2 p3.2 5 b3 5 a2 p3.3 132 f7 93 a1+ p3.4 131 e7 92 a1+ p3.5 130 b6 91 a2 p3.6 129 a7 90 a2 p3.7 14 e4 - a1+ p3.8 13 e3 - a1+ p3.9 12 f5 - a1+ p3.10 11 f6 - a1+ p3.11 10 d3 - a1+ p3.12 9 d2 - a2 p3.13 8 c2 - a2 p3.14 134 d6 - a1+ p3.15 133 d7 - a1+ p4.0 124 b8 85 a2 p4.1 123 a9 84 a2 p4.2 122 e8 - a1+ p4.3 121 f8 - a1+ p4.4 120 c7 - a1+ p4.5 119 d8 - a1+ p4.6 118 c8 - a1+ p4.7 117 c9 - a1+ p5.0 84 h9 58 a1+ p5.1 83 h8 57 a1+ p5.2 82 h7 56 a1+ table 9 package pin mapping (cont?d) function lqfp-144 lfbga-144 lqfp-100 pad type notes subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 23 v1.4, 2016-01 p5.3 81 j10 - a2 p5.4 80 k10 - a2 p5.5 79 j8 - a2 p5.6 78 k8 - a2 p5.7 77 j7 55 a1+ p5.8 58 h6 - a2 p5.9 57 k6 - a2 p5.10 56 h5 - a1+ p5.11 55 j5 - a1+ p6.0 101 g10 - a2 p6.1 100 f9 - a2 p6.2 99 h10 - a2 p6.3 98 g9 - a1+ p6.4 97 f10 - a2 p6.5 96 f11 - a2 p6.6 95 f12 - a2 p14.0 42 l3 31 an/dig_in p14.1 41 l2 30 an/dig_in p14.2 40 k3 29 an/dig_in p14.3 39 j4 28 an/dig_in p14.4 38 k1 27 an/dig_in p14.5 37 k2 26 an/dig_in p14.6 36 j3 25 an/dig_in p14.7 35 j2 24 an/dig_in p14.8 52 m5 37 an/dac/di g_in p14.9 51 l5 36 an/dac/di g_in p14.12 34 j1 23 an/dig_in p14.13 33 h4 22 an/dig_in p14.14 32 h3 21 an/dig_in p14.15 31 h2 20 an/dig_in p15.2 30 h1 19 an/dig_in table 9 package pin mapping (cont?d) function lqfp-144 lfbga-144 lqfp-100 pad type notes subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 24 v1.4, 2016-01 p15.3 29 g2 18 an/dig_in p15.4 28 g4 - an/dig_in p15.5 27 g3 - an/dig_in p15.6 26 g5 - an/dig_in p15.7 25 g6 - an/dig_in p15.8 54 m6 39 an/dig_in p15.9 53 l6 38 an/dig_in p15.12 50 k5 - an/dig_in p15.13 49 m4 - an/dig_in p15.14 44 l4 - an/dig_in p15.15 43 k4 - an/dig_in usb_dp 16 e1 9 special usb_dm 15 d1 8 special hib_io_0 21 f4 14 a1 special at the first power-up and with every reset of the hibernate domain this pin is configured as open- drain output and drives "0". as output the medium driver mode is active. hib_io_1 20 f3 13 a1 special at the first power-up and with every reset of the hibernate domain this pin is configured as input with no pull device active. as output the medium driver mode is active. tck 93 g8 67 a1 weak pull-down active. tms 92 g7 66 a1+ weak pull-up active. as output the strong-soft driver mode is active. porst 91 g11 65 special weak pull-up permanently active, strong pull-down controlled by evr. xtal1 87 h11 61 clock_in xtal2 88 h12 62 clock_o table 9 package pin mapping (cont?d) function lqfp-144 lfbga-144 lqfp-100 pad type notes subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 25 v1.4, 2016-01 rtc_xtal1 22 f2 15 clock_in rtc_xtal2 23 f1 16 clock_o vbat 24 g1 17 power when vddp is supplied vbat has to be supplied as well. vbus 17 e2 10 special varef 46 m3 33 an_ref vagnd 45 m2 32 an_ref vdda 48 l1 35 an_power vssa 47 m1 34 an_power vddc 19 - 12 power vddc 61 - 42 power vddc 90 - 64 power vddc 125 - 86 power vddc - a2 - power vddc - b12 - power vddc - m11 - power vddp 18 - 11 power vddp 62 - 43 power vddp 86 - 60 power vddp 126 - 87 power vddp - a11 - power vddp - b1 - power vddp - l12 - power vss 85 - 59 power vss - a1 - power vss - a12 - power vss - m12 - power table 9 package pin mapping (cont?d) function lqfp-144 lfbga-144 lqfp-100 pad type notes subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 26 v1.4, 2016-01 vsso 89 j12 63 power vss exp. pad - exp. pad power exposed die pad the exposed die pad is connected internally to vss. for proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. for thermal aspects, please refer to the data sheet. board layout examples are given in an application note. table 9 package pin mapping (cont?d) function lqfp-144 lfbga-144 lqfp-100 pad type notes subject to agreement on the use of product information
xmc4500 xmc4000 family general device information data sheet 27 v1.4, 2016-01 2.2.2 port i/o functions the following general scheme is used to describe each port pin: figure 8 simplified port structure pn.y is the port pin name, defining the cont rol and data bits/registers associated with it. as gpio, the port is under software control. its input value is read via pn_in.y, pn_out defines the output value. up to four alternate output functions (a lt1/2/3/4) can be mapped to a single port pin, selected by pn_iocr.pc. the output value is directly driven by the respective module, with the pin characteristics controlled by th e port registers (wit hin the limits of the connected pad). the port pin input can be connected to mult iple peripherals. most peripherals have an input multiplexer to select between different possible input sources. the input path is also active while the pin is configured as output. th is allows to feedback an output to on-chip resources witho ut wasting an additional external pin. by pn_hwsel it is possible to select between different hardware ?masters? (hwo0/hwi0, hwo1/hwi1). the selected peri pheral can take control of the pin(s). hardware control overrules settings in the respective port pin registers. table 10 port i/o function description function outputs inputs alt1 altn hwo0 hwi0 input input p0.0 moda.out modb.out modb.ina modc.ina pn.y moda.out moda.ina modc.inb xmc4000 pn.y v ddp gnd pn.y alt1 ... altn hwo0 hwo1 sw control logic input 0 input n ... pad hwi0 hwi1 modb.out modb moda moda.ina subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 28 v1.4, 2016-01 2.2.2.1 port i/o function table table 11 port i/o functions function outputs inputs alt1 alt2 alt3 alt4 hwo0 hwo1 hwi0 hwi1 input input input input input input input input p0.0 can. n0_txd ccu80. out21 ledts0. col2 u1c1. dx0d eth0. clk_rmiib eru0. 0b0 eth0. clkrxb p0.1 usb. drivevbus u1c1. dout0 ccu80. out11 ledts0. col3 eth0. crs_dvb eru0. 0a0 eth0. rxdvb p0.2 u1c1. selo1 ccu80. out01 u1c0. dout3 ebu. ad0 u1c0. hwin3 ebu. d0 eth0. rxd0b eru0. 3b3 p0.3 ccu80. out20 u1c0. dout2 ebu. ad1 u1c0. hwin2 ebu. d1 eth0. rxd1b eru1. 3b0 p0.4 eth0. tx_en ccu80. out10 u1c0. dout1 ebu. ad2 u1c0. hwin1 ebu. d2 u1c0. dx0a eru0. 2b3 p0.5 eth0. txd0 u1c0. dout0 ccu80. out00 u1c0. dout0 ebu. ad3 u1c0. hwin0 ebu. d3 u1c0. dx0b eru1. 3a0 p0.6 eth0. txd1 u1c0. selo0 ccu80. out30 ebu. adv u1c0. dx2a eru0. 3b2 ccu80. in2b p0.7 wwdt. service_out u0c0. selo0 ebu. ad6 db. tdi ebu. d6 u0c0. dx2b dsd. din1a eru0. 2b1 ccu80. in0a ccu80. in1a ccu80. in2a ccu80. in3a p0.8 scu. extclk u0c0. sclkout ebu. ad7 db. trst ebu. d7 u0c0. dx1b dsd. din0a eru0. 2a1 ccu80. in1b p0.9 u1c1. selo0 ccu80. out12 ledts0. col0 eth0. mdo ebu. cs1 eth0. mdia u1c1. dx2a usb. id eru0. 1b0 p0.10 eth0. mdc u1c1. sclkout ccu80. out02 ledts0. col1 u1c1. dx1a eru0. 1a0 p0.11 u1c0. sclkout ccu80. out31 sdmmc. rst ebu. breq eth0. rxerb u1c0. dx1a eru0. 3a2 p0.12 u1c1. selo0 ccu40. out3 ebu. hlda ebu. hlda u1c1. dx2b eru0. 2b2 p0.13 u1c1. sclkout ccu40. out2 u1c1. dx1b eru0. 2a2 p0.14 u1c0. selo1 ccu40. out1 u1c1. dout3 u1c1. hwin3 ccu42. in3c p0.15 u1c0. selo2 ccu40. out0 u1c1. dout2 u1c1. hwin2 ccu42. in2c p1.0 dsd. cgpwmn u0c0. selo0 ccu40. out3 eru1. pdout3 u0c0. dx2a eru0. 3b0 ccu40. in3a p1.1 dsd. cgpwmp u0c0. sclkout ccu40. out2 eru1. pdout2 sdmmc. sdwc u0c0. dx1a posif0. in2a eru0. 3a0 ccu40. in2a p1.2 ccu40. out1 eru1. pdout1 u0c0. dout3 ebu. ad14 u0c0. hwin3 ebu. d14 posif0. in1a eru1. 2b0 ccu40. in1a p1.3 u0c0. mclkout ccu40. out0 eru1. pdout0 u0c0. dout2 ebu. ad15 u0c0. hwin2 ebu. d15 posif0. in0a eru1. 2a0 ccu40. in0a p1 . 4 wwdt. service_out can. n0_txd ccu80. out33 ccu81. out20 u0c0. dout1 u0c0. hwin1 u0c0. dx0b can. n1_rxdd eru0. 2b0 ccu41. in0c subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 29 v1.4, 2016-01 p1.5 can. n1_txd u0c0. dout0 ccu80. out23 ccu81. out10 u0c0. dout0 u0c0. hwin0 u0c0. dx0a can. n0_rxda eru0. 2a0 eru1. 0a0 ccu41. in1c dsd. din2b p1.6 u0c0. sclkout sdmmc. data1_out ebu. ad10 sdmmc. data1_in ebu. d10 dsd. din2a p1.7 u0c0. dout0 dsd. mclk2 sdmmc. data2_out ebu. ad11 sdmmc. data2_in ebu. d11 dsd. mclk2a p1.8 u0c0. selo1 dsd. mclk1 sdmmc. data4_out ebu. ad12 sdmmc. data4_in ebu. d12 can. n2_rxda dsd. mclk1a p1.9 can. n2_txd sdmmc. data5_out ebu. ad13 sdmmc. data5_in ebu. d13 dsd. mclk0a p1.10 eth0. mdc u0c0. sclkout ccu81. out21 sdmmc. sdcd ccu41. in2c p1.11 u0c0. selo0 ccu81. out11 eth0. mdo eth0. mdic ccu41. in3c p1.12 eth0. tx_en can. n1_txd ccu81. out01 sdmmc. data6_out ebu. ad16 sdmmc. data6_in ebu. d16 p1.13 eth0. txd0 u0c1. selo3 ccu81. out20 sdmmc. data7_out ebu. ad17 sdmmc. data7_in ebu. d17 can. n1_rxdc p1.14 eth0. txd1 u0c1. selo2 ccu81. out10 ebu. ad18 ebu. d18 p1.15 scu. extclk dsd. mclk2 ccu81. out00 ebu. ad19 ebu. d19 dsd. mclk2b eru1. 1a0 p2.0 ccu81. out21 dsd. cgpwmn ledts0. col1 eth0. mdo ebu. ad20 eth0. mdib ebu. d20 eru0. 0b3 ccu40. in1c p2.1 ccu81. out11 dsd. cgpwmp ledts0. col0 db.tdo/ traceswo ebu. ad21 ebu. d21 eth0. clk_rmiia eru1. 0b0 ccu40. in0c et h0. cl krxa p2.2 vadc. emux00 ccu81. out01 ccu41. out3 ledts0. line0 ledts0. extended0 ebu. ad22 ledts0. tsin0a ebu. d22 eth0. rxd0a u0c1. dx0a eru0. 1b2 ccu41. in3a p2.3 vadc. emux01 u0c1. selo0 ccu41. out2 ledts0. line1 ledts0. extended1 ebu. ad23 ledts0. tsin1a ebu. d23 eth0. rxd1a u0c1. dx2a eru0. 1a2 posif1. in2a ccu41. in2a p2.4 vadc. emux02 u0c1. sclkout ccu41. out1 ledts0. line2 ledts0. extended2 ebu. ad24 ledts0. tsin2a ebu. d24 eth0. rxera u0c1. dx1a eru0. 0b2 posif1. in1a ccu41. in1a p2.5 eth0. tx_en u0c1. dout0 ccu41. out0 ledts0. line3 ledts0. extended3 ebu. ad25 ledts0. tsin3a ebu. d25 eth0. rxdva u0c1. dx0b eru0. 0a2 posif1. in 0 a ccu41. in0a eth0. crs_dva p2.6 u2c0. selo4 ccu80. out13 ledts0. col3 u2c0. dout3 u2c0. hwin3 dsd. din1b can. n1_rxda eru0. 1b3 ccu40. in3c p2.7 eth0. mdc can. n1_txd ccu80. out03 ledts0. col2 dsd. din0b eru1. 1b0 ccu40. in2c p2.8 eth0. txd0 ccu80. out32 ledts0. line4 ledts0. extended4 ebu. ad26 ledts0. tsin4a ebu. d26 dac. trigger5 ccu40. in0b ccu40. in1b ccu40. in2b ccu40. in3b p2.9 eth0. txd1 ccu80. out22 ledts0. line5 ledts0. extended5 ebu. ad27 ledts0. tsin5a ebu. d27 dac. trigger4 ccu41. in0b ccu41. in1b ccu41. in2b ccu41. in3b p2.10 vadc. emux10 db. etm_traceda ta3 ebu. ad28 ebu. d28 p2.11 eth0. txer ccu80. out22 db. etm_traceda ta2 ebu. ad 2 9 ebu. d29 table 11 port i/o functions (cont?d) function outputs inputs alt1 alt2 alt3 alt4 hwo0 hwo1 hwi0 hwi1 input input input input input input input input subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 30 v1.4, 2016-01 p2.12 eth0. txd2 ccu81. out33 eth0. txd0 db. etm_traceda ta1 ebu. ad30 ebu. d30 ccu43. in3c p2.13 eth0. txd3 eth0. txd1 db. etm_traceda ta0 ebu. ad31 ebu. d31 ccu43. in2c p2.14 vadc. emux11 u1c0. dout0 ccu80. out21 db. etm_traceclk ebu. bc0 u1c0. dx0d ccu43. in0b ccu43. in1b ccu43. in2b ccu43. in3b p2.15 vadc. emux12 ccu80. out11 ledts0. line6 ledts0. extended6 ebu. bc1 ledts0. tsin6a eth0. cola u1c0. dx0c ccu42. in0b ccu42. in1b ccu42. in2b ccu42. in3b p3.0 u2c1. selo0 u0c1. sclkout ccu42. out0 ebu. rd u0c1. dx1b ccu80. in2c ccu81. in0c p3.1 u0c1. selo0 ebu. rd_wr u0c1. dx2b eru0. 0b1 ccu80. in1c p3.2 usb. drivevbus can. n0_txd ledts0. cola ebu. cs0 eru0. 0a1 ccu80. in0c p3.3 u1c1. selo1 ccu42. out3 sdmmc. led ebu. wait dsd. din3b ccu42. in3a ccu80. in3b p3.4 u2c1. mclkout u1c1. selo2 ccu42. out2 dsd. mclk3 sdmmc. bus_power ebu. hold u2c1. dx0b dsd. mclk3b ccu42. in2a ccu80. in0b p3.5 u2c1. dout0 u1c1. selo3 ccu42. out1 u0c1. dout0 sdmmc. cmd_out ebu. ad4 sdmmc. cmd_in ebu. d4 u2c1. dx0a eru0. 3b1 ccu42. in1a p3.6 u2c1. sclkout u1c1. selo4 ccu42. out0 u0c1. sclkout sdmmc. clk_out ebu. ad5 sdmmc. clk_in ebu. d5 u2c1. dx1b eru0. 3a1 ccu42. in0a p3.7 can. n2_txd ccu41. out3 ledts0. line0 u2c0. dx0c p3.8 u2c0. dout0 u0c1. selo3 ccu41. out2 ledts0. line1 can. n2_rxdb posif1. in2b p3.9 u2c0. sclkout can. n1_txd ccu41. out1 ledts0. line2 posif1. in1b p3.10 u2c0. selo0 can. n0_txd ccu41. out0 ledts0. line3 u0c1. dout3 u0c1. hwin3 posif1. in0b p3.11 u2c1. dout0 u0c1. selo2 ccu42. out3 le d ts0. line4 u0c1. dout2 u0c1. hwin2 can. n1_rxdb ccu81. in3c p3.12 u0c1. selo1 ccu42. out2 ledts0. line5 u0c1. dout1 u0c1. hwin1 can. n0_rxdc u2c1. dx0d ccu81. in2c p3.13 u2c1. sclkout u0c1. dout0 ccu42. out1 ledts0. line6 u0c1. dout0 u0c1. hwin0 u0c1. dx0d ccu80. in3c ccu81. in1c p3.14 u1c0. selo3 u1c1. dout1 u1c1. hwin1 u1c1. dx0b ccu42. in1c p3.15 u1c1. dout0 u1c1. dout0 u1c1. hwin0 u1c1. dx0a ccu42. in0c p4.0 dsd. mclk1 sdmmc. data0_out ebu. ad8 sdmmc. data0_in ebu. d8 u1c1. dx1c dsd. mclk1b u0c1. dx0e u2c1. dx0c p4.1 u2c1. selo0 dsd. mclk0 u0c1. selo0 sdmmc. data3_out ebu. ad9 sdmmc. data3_in ebu. d9 u2c1. dx2b dsd. mclk0b u2c1. dx2 a p4. 2 u2c1. selo1 u1c1. dout0 u2c1. sclkout u1c1. dx0c u2c1. dx1a ccu43. in1c table 11 port i/o functions (cont?d) function outputs inputs alt1 alt2 alt3 alt4 hwo0 hwo1 hwi0 hwi1 input input input input input input input input subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 31 v1.4, 2016-01 p4.3 u2c1. selo2 u0c0. selo5 ccu43. out3 ccu43. in3a p4.4 u0c0. selo4 ccu43. out2 u2c1. dout3 u2c1. hwin3 ccu43. in2a p4.5 u0c0. selo3 ccu43. out1 u2c1. dout2 u2c1. hwin2 ccu43. in1a p4.6 u0c0. selo2 ccu43. out0 u2c1. dout1 u2c1. hwin1 can. n2_rxdc ccu43. in0a p4.7 can. n2_txd u2c1. dout0 u2c1. hwin0 u0c0. dx0c ccu43. in0c p5.0 u2c0. dout0 dsd. cgpwmn ccu81. out33 u2c0. dout0 u2c0. hwin0 u2c0. dx0b eth0. rxd0d u0c0. dx0d ccu81. in0a ccu81. in1a ccu81. in2a ccu81. in3a p5.1 u0c0. dout0 dsd. cgpwmp ccu81. out32 u2c0. dout1 u2c0. hwin1 u2c0. dx0a eth0. rxd1d ccu81. in0b p5.2 u2c0. sclkout ccu81. out23 u2c0. dx1a eth0. crs_dvd ccu81. in1b eth0. rxdvd p5. 3 u2 c0. selo0 ccu81. out22 ebu. cke ebu. a20 u2c0. dx2a eth0. rxerd ccu81. in2b p5.4 u2c0. selo1 ccu81. out13 ebu. ras ebu. a21 eth0. crsd ccu81. in3b p5.5 u2c0. selo2 ccu81. out12 ebu. cas ebu. a22 eth0. cold p5.6 u2c0. selo3 ccu81. out03 ebu. bfclko ebu. a23 ebu. bfclki p5.7 ccu81. out02 ledts0. cola u2c0. dout2 u2c0. hwin2 p5.8 u1c0. sclkout ccu80. out01 ebu. sdclko ebu. cs2 eth0. rxd2a u1c0. dx1b p5.9 u1c0. selo0 ccu80. out20 eth0. tx_en ebu. bfclko ebu. cs3 eth0. rxd3a u1c0. dx2b p5.10 u1c0. mclkout ccu80. out10 ledts0. line7 ledts0. extended7 ledts0. tsin7a eth0. clk_txa p5.11 u1c0. selo1 ccu80. out00 eth0. crsa p6.0 eth0. txd2 u0c1. selo1 ccu81. out31 db. etm_traceclk ebu. a16 p6.1 eth0. txd3 u0c1. selo0 ccu81. out30 db. etm_traceda ta3 ebu. a17 u0c1. dx2c p6.2 eth0. txer u0c1. sclkout ccu43. out3 db. etm_traceda ta2 ebu. a18 u0c1. dx1c p6.3 ccu43. out2 u0c1. dx0c eth0. rxd3b p6.4 u0c1. dout0 ccu43. out1 ebu. sdclko ebu. a19 ebu. sdclki eth0. rxd2b p6.5 u0c1. mclkout ccu43. out0 db. etm_traceda ta1 ebu. bc2 dsd. din3a eth0. clk_rmiid eth0. clkrxd table 11 port i/o functions (cont?d) function outputs inputs alt1 alt2 alt3 alt4 hwo0 hwo1 hwi0 hwi1 input input input input input input input input subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 32 v1.4, 2016-01 p6.6 dsd. mclk3 db. etm_traceda ta0 ebu. bc3 dsd. mclk3a eth0. clk_txb p14.0 vadc. g0ch0 p14.1 vadc. g0ch1 p14.2 vadc. g0ch2 vadc. g1ch2 p14.3 vadc. g0ch3 vadc. g1ch3 can. n0_rxdb p14.4 vadc. g0ch4 vadc. g2ch0 p14.5 vadc. g0ch5 vadc. g2ch1 posif0. in2b p14.6 vadc. g0ch6 posif0. in1b g0orc6 p14.7 vadc. g0ch7 posif0. in0b g0orc7 p14.8 dac. out_0 vadc. g1ch0 vadc. g3ch2 eth0. rxd0c p14.9 dac. out_1 vadc. g1ch1 vadc. g3ch3 eth0. rxd1c p14.12 vadc. g1ch4 p14.13 vadc. g1ch5 p14.14 vadc. g1ch6 g1orc6 p14.15 vadc. g1ch7 g1orc7 p15.2 vadc. g2ch2 p15.3 vadc. g2ch3 p15.4 vadc. g2ch4 p15.5 vadc. g2ch5 p15.6 vadc. g2ch6 p15.7 vadc. g2ch7 p15.8 vadc. g3ch0 eth0. clk_rmiic eth0. cl krx c p15.9 vadc. g3ch1 eth0. crs_dvc eth0. rxdvc table 11 port i/o functions (cont?d) function outputs inputs alt1 alt2 alt3 alt4 hwo0 hwo1 hwi0 hwi1 input input input input input input input input subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 33 v1.4, 2016-01 p15.12 vadc. g3ch4 p15.13 vadc. g3ch5 p15.14 vadc. g3ch6 p15.15 vadc. g3ch7 usb_dp usb_dm hib_io_0 hibout wwdt. service_out wakeupa hib_io_1 hibout wwdt. service_out wakeupb tck db.tck/ swclk tms db.tms/ swdio porst xtal1 u0c0. dx0f u0c1. dx0f u1c0. dx0f u1c1. dx0f u2c0. dx0f u2c1. dx0f xtal2 rtc_xtal1 eru0. 1b1 rtc_xtal2 table 11 port i/o functions (cont?d) function outputs inputs alt1 alt2 alt3 alt4 hwo0 hwo1 hwi0 hwi1 input input input input input input input input subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 34 v1.4, 2016-01 2.3 power connection scheme figure 9 . shows a reference power connection scheme for the xmc4500. figure 9 power connection scheme every power supply pin needs to be connected. different pins of the same supply need also to be externally connected. as example, all v ddp pins must be connected externally to one v ddp net. in this reference scheme one 100 nf capacitor is connected at each supply pin against v ss . an additional 10 f capacitor is connected to the v ddp nets and an additional 10 uf capacitor to the v ddc nets. v bat m x v ddc n x v ddp v ss v dda v aref v agnd hibernate domain rtc hibernate control retention memory 32 khz clock core domain cpu dig. peripherals analog domain adc dac gpios out-of-range comparator pad domain level shift. flash rams 100 nf x m 10 f x 1 100 nf reference 100 nf 3.3v xmc4000 evr v ssa exp. die pad v ss gnd gnd gnd gnd agnd 100 nf x n 10 f x 1 3.3v 2.1...3.6 v subject to agreement on the use of product information
xmc4500 xmc4000 family data sheet 35 v1.4, 2016-01 the xmc4500 has a common ground concept, all v ss , v ssa and v sso pins share the same ground potential. in packages with an ex posed die pad it must be connected to the common ground as well. v agnd is the low potential to the analog reference v aref . depending on the application it can share the common ground or have a different potential. when v ddp is supplied, v bat must be supplied as well. if no other supply source (e.g. battery) is connected to v bat , the v bat pin can also be connected directly to v ddp . subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 36 v1.4, 2016-01 3 electrical parameters 3.1 general parameters 3.1.1 parameter interpretation the parameters listed in this section partly represent the characteristics of the xmc4500 and partly its requirements on the system. to aid interpreting the parameters easily when evaluating them for a design, they ar e marked with a two-letter abbreviation in column ?symbol?: ? cc such parameters indicate c ontroller c haracteristics, which ar e a distinctive feature of the xmc4500 and must be regarded for system design. ? sr such parameters indicate s ystem r equirements, which must be provided by the application system in which t he xmc4500 is designed in. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 37 v1.4, 2016-01 3.1.2 absolute maximum ratings stresses above the values listed under ?absolute maximum ratings? may cause permanent damage to the device. this is a st ress rating only and functional operation of the device at these or any ot her conditions above those indicated in the operational sections of this specificat ion is not implied. exposure to absolute maximum rating conditions may affect device reliability. figure 10 explains the input voltage ranges of v in and v ain and its dependency to the supply level of v ddp .the input voltage must not exceed 4.3 v, and it must not be more than 1.0 v above v ddp . for the range up to v ddp + 1.0 v also see the definition of the overload conditions in section 3.1.3 . table 12 absolute maximum rating parameters parameter symbol values unit note / test con dition min. typ. max. storage temperature t st sr -65 ? 150 t j sr -40 ? v ss v ddp sr ? ? 4.3 v ? voltage on any class a and dedicated input pin with respect to v ss v in sr -1.0 ? v ddp + 1.0 or max. 4.3 v whichever is lower voltage on any analog input pin with respect to v agnd v ain v aref sr -1.0 ? v ddp + 1.0 or max. 4.3 v whichever is lower input current on any pin during overload condition i in sr -10 ? +10 ma absolute maximum sum of all input circuit currents for one port group during overload condition 1) 1) the port groups are defined in table 16 . i in sr -25 ? +25 ma absolute maximum sum of all input circuit currents during overload condition i in sr -100 ? +100 ma subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 38 v1.4, 2016-01 figure 10 absolute maximum input voltage ranges 3.1.3 pin reliability in overload when receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own io power supplies specification. table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: ? full operation life-time is not exceeded ? operating conditions are met for ? pad supply levels ( v ddp or v dda ) ? temperature if a pin current is outside of the operating conditions but within the overload conditions, then the parameters of this pin as stated in t he operating conditions can no longer be guaranteed. operat ion is still possible in mo st cases but with relaxed parameters. note: an overload condition on one or more pins does not require a reset. note: a series resistor at the pin to limit the current to the maxi mum permitted overload current is sufficient to handle failur e situations like short to battery. v 4.3 v ss -1.0 a a b abs. max. input voltage v in with v ddp > 3.3 v abs. max. input voltage v in with v ddp 3.3 v v v ddp + 1.0 v ss -1.0 v ddp b subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 39 v1.4, 2016-01 figure 11 shows the path of the input currents during overload via the esd protection structures. the diodes against v ddp and ground are a simplified representation of these esd protection structures. figure 11 input overload current via esd structures table 14 and table 15 list input voltages that can be reached under overload conditions. note that the absolute maximum input voltages as defined in the absolute maximum ratings must not be exceeded during overload. table 13 overload parameters parameter symbol values unit note / test condition min. typ. max. input current on any port pin during overload condition i ov sr -5 ? 5 ma absolute sum of all input circuit currents for one port group during overload condition 1) 1) the port groups are defined in table 16 . i ovg sr ? ? 20 ma | i ovx |, for all i ovx < | i ovx |, for all i ovx > i ovs sr ? ? 80 ma i ovg pn.y i ovx gnd esd pad gnd v ddp v ddp subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 40 v1.4, 2016-01 table 14 pn-junction characteris itics for positive overload pad type i ov =5ma, t j =-40c i ov =5ma, t j =150c a1 / a1+ v in = v ddp +1.0v v in = v ddp +0.75v a2 v in = v ddp +0.7v v in = v ddp +0.6v an/dig_in v in = v ddp +1.0v v in = v ddp +0.75v table 15 pn-junction characterisitics for negative overload pad type i ov =5ma, t j =-40c i ov =5ma, t j =150c a1 / a1+ v in = v ss -1.0v v in = v ss -0.75v a2 v in = v ss -0.7v v in = v ss -0.6v an/dig_in v in = v ddp -1.0v v in = v ddp -0.75v table 16 port groups for overload and short-circuit current sum parameters group pins 1 p0.[15:0], p3.[15:0] 2 p14.[15:0], p15.[15:0] 3 p2.[15:0], p5.[11:0] 4 p1.[15:0], p4.[7:0], p6.[6:0] subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 41 v1.4, 2016-01 3.1.4 pad driver and pad classes summary this section gives an overview on the different pad driver classes and their basic characteristics. figure 12 output slopes with different pad driver modes figure 12 is a qualitative display of the resulting output slope performance with different output driver modes. the detailed input and output characteristics are listed in section 3.2.1 . table 17 pad driver and pad classes overview class power supply type sub-class speed grade load termination a 3.3 v lvttl i/o a1 (e.g. gpio) 6 mhz 100 pf no a1+ (e.g. serial i/os) 25 mhz 50 pf series termination recommended a2 (e.g. ext. bus) 80 mhz 15 pf series termination recommended v v ddp v ss v oh v ol t a b c d e f a b c d e f o u t p u t h i g h v o l t a g e o u t p u t l o w v o l t a g e weak drive strength medium drive strength strong ? slow drive strength strong ? soft drive strength strong ? medium drive strength strong ? sharp drive strength a b c e f class a2 pads c d e f class a1+ pads e f class a1 pads subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 42 v1.4, 2016-01 3.1.5 operating conditions the following operating conditions must not be exceeded in order to ensure correct operation and reliability of the xmc4500. a ll parameters specified in the following sections refer to these operatin g conditions, unless noted otherwise. table 18 operating conditions parameters parameter symbol values unit note / test condition min. typ. max. ambient temperature t a sr -40 ? ? ? v ddp sr 3.13 1) 1) see also the supply monitoring thresholds, section 3.3.2 . 3.3 3.63 2) 2) voltage overshoot to 4.0 v is permissible at power-up and porst low, provided the pulse duration is less than 100 v ddc cc ? ? v ss sr 0 ?? v dda sr 3.0 3.3 3.6 2) v analog ground voltage for v dda v ssa sr -0.1 0 0.1 v battery supply voltage for hibernate domain v bat sr 1.95 3) 3) to start the hibernate domain it is required that v bat v bat ? v ddp is supplied v bat has to be supplied as well. system frequency f sys sr ?? i sc sr -5 ? table 16 . i sc_pg sr ?? i sc_d sr ?? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 43 v1.4, 2016-01 3.2 dc parameters 3.2.1 input/output pins the digital input stage of the shared analog/dig ital input pins is identical to the input stage of the standard digital input/output pins. the pull-up on the porst pin is identical to the pull-up on the standard digital input/output pins. note: these parameters are not subject to production test, but verified by design and/or characterization. table 19 standard pad parameters parameter symbol values unit note / test condition min. max. pin capacitance (digital inputs/outputs) c io cc ? i pdl | cc 150 ? v in v ddp 1) current required to override the pull device with the opposite logic level (?force current?). with active pull device, at load currents between force and keep current the input state is undefined. ? v in v ddp 2) load current at which the pull device still ma intains the valid logic level (?keep current?). with active pull device, at load currents between force and keep current the input state is undefined. pull-up current | i puh | cc ? v in v ddp 100 ? v in v ddp input hysteresis for pads of all a classes 3) 3) hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. it can not be guaranteed that it suppresses switching due to external system noise. hysa cc 0.1 v ddp ? t sf1 cc ? t sf2 cc 100 ? i ppd | cc 13 ? v in = subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 44 v1.4, 2016-01 figure 13 pull device input characteristics figure 13 visualizes the input characteristics with an active internal pull device: ? in the cases ?a? the internal pull device is overridden by a strong external driver; ? in the cases ?b? the internal pull device defines the input logical state against a weak external load. xmc4000 in i pdl a i pdl 150 b i pdl 10 v ddp gnd v v ddp v ss 0.6 x v ddp a 0.36 x v ddp b valid high valid low invalid digital input xmc4000 in i puh a i puh 100 b i puh 10 v v ddp v ss 0.6 x v ddp b 0.36 x v ddp a valid high valid low invalid digital input pull-down active pull-up active subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 45 v1.4, 2016-01 table 20 standard pads class_a1 parameter symbol values unit note / test condition min. max. input leakage current i oza1 cc -500 500 na 0 v v in v ddp input high voltage v iha1 sr 0.6 v ddp v ddp + 0.3 v max. 3.6 v input low voltage v ila1 sr -0.3 0.36 v ddp v output high voltage, pod 1) = weak v oha1 cc v ddp - 0.4 ? i oh ? i oh v ddp - 0.4 ? i oh ? i oh v ola1 cc ? i ol ? i ol t fa1 cc ? c l =20pf; pod 1) = weak 1) pod = pin out driver ? c l =50pf; pod 1) = medium rise time t ra1 cc ? c l =20pf; pod 1) = weak ? c l =50pf; pod 1) = medium table 21 standard pads class_a1+ parameter symbol values unit note / test condition min. max. input leakage current i oza1+ cc -1 1 v in v ddp input high voltage v iha1+ sr 0.6 v ddp v ddp + 0.3 v max. 3.6 v input low voltage v ila1+ sr -0.3 0.36 v ddp v subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 46 v1.4, 2016-01 output high voltage, pod 1) = weak v oha1+ cc v ddp - 0.4 ? i oh ? i oh v ddp - 0.4 ? i oh ? i oh v ddp - 0.4 ? i oh ? i oh v ola1+ cc ? i ol ? i ol ? i ol t fa1+ cc ? c l =20pf; pod 1) = weak ? c l =50pf; pod 1) = medium ? c l =50pf; pod 1) = strong; edge = slow ? c l =50pf; pod 1) = strong; edge = soft; rise time t ra1+ cc ? c l =20pf; pod 1) = weak ? c l =50pf; pod 1) = medium ? c l =50pf; pod 1) = strong; edge = slow ? c l =50pf; pod 1) = strong; edge = soft 1) pod = pin out driver table 21 standard pads class_a1+ parameter symbol values unit note / test condition min. max. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 47 v1.4, 2016-01 table 22 standard pads class_a2 parameter symbol values unit note / test condition min. max. input leakage current i oza2 cc -6 6 v in < 0.5* v ddp -1v; 0.5* v ddp +1v < v in v ddp -3 3 v ddp -1v < v in <0.5* v ddp +1v input high voltage v iha2 sr 0.6 v ddp v ddp + 0.3 v max. 3.6 v input low voltage v ila2 sr -0.3 0.36 v ddp v output high voltage, pod = weak v oha2 cc v ddp - 0.4 ? i oh ? i oh v ddp - 0.4 ? i oh ? i oh v ddp - 0.4 ? i oh ? i oh v ola2 cc ? i ol ? i ol ? i ol subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 48 v1.4, 2016-01 fall time t fa2 cc ? c l =20pf; pod = weak ? c l =50pf; pod = medium ? c l =50pf; pod = strong; edge = sharp ? c l =50pf; pod = strong; edge = medium ? c l =50pf; pod = strong; edge = soft rise time t ra2 cc ? c l =20pf; pod = weak ? c l =50pf; pod = medium ? c l =50pf; pod = strong; edge = sharp ? c l =50pf; pod = strong; edge = medium ? c l =50pf; pod = strong; edge = soft table 22 standard pads class_a2 parameter symbol values unit note / test condition min. max. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 49 v1.4, 2016-01 3.2.2 analog to digital converters (vadc) note: these parameters are not subject to production test, but verified by design and/or characterization. table 23 vadc parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. analog reference voltage 5) v aref sr v agnd + 1 ? v dda + v agnd sr v ssm - 0.05 ? v aref - 1 v analog reference voltage range 2)5) v aref - v agnd sr 1 ? v dda + v ain sr v agnd ? v dda v input leakage at analog inputs 3) i oz1 cc -100 ? v dda < v ain < v dda -500 ? v ain v dda -100 ? v dda v ain v dda input leakage current at varef i oz2 cc -1 ? v aref v dda input leakage current at vagnd i oz3 cc -1 ? v agnd v dda internal adc clock f adci cc 2 ? v dda = 3.3 v switched capacitance at the analog voltage inputs 4) c ainsw cc ? c aintot cc ? c arefsw cc ? c areftot cc ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 50 v1.4, 2016-01 total unadjusted error tue cc -4 ? v dda = 3.3 v; v aref = v dda 7) differential non-linearity error 8) ea dnl cc -3 ? ea gain cc -4 ? ea inl cc -3 ? ea off cc -4 ? v dda power supply current per active converter i ddaa cc ? v ddp =3.6v, t j = 150 o c charge consumption on v aref per conversion 5) q conv cc ? ? v aref v dda 9) on resistance of the analog input path r ain cc ? r ain7t cc 180 550 900 ohm resistance of the reference voltage input path r aref cc ? v dda , then the adc converter errors increase. if the reference voltage is reduced by the factor k (k<1), tue, dnl, inl, ga in, and offset errors increase also by the factor 1/k. 3) the leakage current definition is a continuous function , as shown in figure adcx analog inputs leakage. the numerical values defined determine the characteristic points of the given continuous linear approximation - they do not define step function (see figure 16 ). 4) the sampling capacity of the conversion c-network is pre-charged to v aref /2 before the sampling moment. because of the parasitic elements, the voltage measured at ainx can deviate from v aref /2. 5) applies to ainx, when used as alternate reference input. 6) this represents an equivalent switched capacitance. this capacitance is not switched to the reference voltage at once. instead, smaller capacitances are successively switched to the reference voltage. 7) for 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. never less than 1 lsb. 8) the sum of dnl/inl/gain/off errors does not exceed the related total unadjusted error tue. 9) the resulting current for a conversion can be calculated with i aref = q conv / t c . the fastest 12-bit post-calibrated conversion of t c = 550 ns results in a typical average current of i aref = 54.5 a. table 23 vadc parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 51 v1.4, 2016-01 figure 14 vadc reference voltage range the power-up calibration of the vadc requires a maximum number of 4 352 f adci cycles. figure 15 vadc input circuits minimum varef - vagnd is 1 v v v dda + 0.05 v agnd + 1 v agnd valid v aref v dda e.g. v aref = 4/5 of v dda conversion error increases by 5/4 precise conversion range (12 bit) t v aref v ssa reference voltage input circuitry analog input circuitry analog_inprefdiag r ext = v ain c ext r ain, on c aintot - c ainsw c ainsw anx v aref r aref, on c areftot - c arefsw c arefsw v agndx v arefx r ain7t v agndx subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 52 v1.4, 2016-01 figure 16 vadc analog input leakage current conversion time ? stc defines additional clock cycles to extend the sample time ? pc adds two cycles if post-calibration is enabled ? dm adds one cycle for an extended conversion time of the msb conversion time examples system assumptions: f adc = 120 mhz i.e. t adc = 8.33 ns, diva = 3, f adci = 30 mhz i.e. t adci = 33.3 ns according to the given formulas the following minimum conversion times can be achieved (stc = 0, dm = 0): 12-bit post-calibrated conversion (pc = 2): t cn12c = (2 + 12 + 2) t adci + 2 t adc = 16 t cn12 = (2 + 12) t adci + 2 t adc = 14 t cn10 = (2 + 10) t adci + 2 t adc = 12 t cn8 = (2 + 8) t adci + 2 t adc = 10 table 24 conversion time (operating conditions apply) parameter symbol values unit note conversion time t c cc 2 t adc + (2+n+stc+pc+dm) t adci t adc =1/ f periph t adci =1/ f adci adc-leakage.vsd v in [% v dda ] 200 na 500 na 3 % 100 % 97 % i oz1 100 na -500 na -100 na single adc input subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 53 v1.4, 2016-01 3.2.3 digital to analog converters (dac) note: these parameters are not subject to production test, but verified by design and/or characterization. table 25 dac parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. rms supply current i dd cc ? res cc ? ? f urate_a cc ? f urate_f cc ? t settle cc ? sr cc 2 5 ? v out_min cc ? ? v out_max cc ? ? inl cc -4 2.5 4 lsb r l dnl cc -2 1 2 lsb r l subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 54 v1.4, 2016-01 conversion calculation unsigned: dacxdata = 4095 v out - v out_min ) / ( v out_max - v out_min ) signed: dacxdata = 4095 v out - v out_min ) / ( v out_max - v out_min ) - 2048 offset error ed off cc 20 mv gain error ed g_in cc -6.5 -1.5 3 % startup time t startup cc ? f c1 cc 2.5 5 ? i out_source cc ? ? i out_sink cc ? ? r out cc ? ? r l sr 5 ?? c l sr ?? snr cc ? ? thd cc ? ? psrr cc ? ? v dda verified by design table 25 dac parameters (operating conditions apply) (cont?d) parameter symbol values unit note / test condition min. typ. max. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 55 v1.4, 2016-01 figure 17 dac conversion examples dac output v out_min v out_max 64 lsbs +/- 4lsb f urate_f (max) 64 lsbs +/- 1lsb f urate_a (max) dac output v out_min v out_max 20 lsbs t settle 20 lsbs t settle subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 56 v1.4, 2016-01 3.2.4 out-of-range comparator (orc) the out-of-range comparator (orc) triggers on analog input voltages ( v ain ) above the analog reference 1) ( v aref ) on selected input pins (g xorcy) and generates a service request trigger (gxorcouty). note: these parameters are not subject to production test, but verified by design and/or characterization. the parameters in table 26 apply for the maximum reference voltage v aref = v dda +50mv. 1) always the standard vadc reference, alternate references do not apply to the orc. table 26 orc parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. dc switching level v odc cc 100 125 200 mv v ain v aref + v odc hysteresis v ohys cc 50 ? v odc mv detection delay of a persistent overvoltage t odd cc 55 ? v ain v aref + 200 mv 45 ? v ain v aref + 400 mv always detected overvoltage pulse t opdd cc 440 ?? v ain v aref + 200 mv 90 ?? v ain v aref + 400 mv never detected overvoltage pulse t opdn cc ?? v ain v aref + 200 mv ?? v ain v aref + 400 mv release delay t ord cc 65 ? v ain v aref enable delay t oed cc ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 57 v1.4, 2016-01 figure 18 gxorcouty trigger generation figure 19 orc detection ranges v ss v aref t ord v odc v ohys t odd gxorcouty gxorcy v ain (v) v aref + 400 mv t v aref + 200 mv overvoltage may be detected (level uncertain) never detected overvoltage pulse (too short) t < t opdn t opdn < t < t opdd overvoltage may be detected t > t opdd always detected overvoltage pulse t < t opdn never detected overvoltage pulse (too short) t opdn < t < t opdd t > t opdd always detected overvoltage pulse v aref + 100 mv overvoltage may be detected t > t opdn never detected overvoltage pulse (too low) v aref subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 58 v1.4, 2016-01 3.2.5 die temperature sensor the die temperature sensor (dts) measures the junction temperature t j . note: these parameters are not subject to production test, but verified by design and/or characterization. the following formula calculates the temperature measured by the dts in [ o c] from the result bit field of the dtsstat register. temperature t dts = (result - 605) / 2.05 [c] this formula and the values defined in table 27 apply with the following calibration values: ? dtscon.bgtrim = 8 h ? dtscon.reftrim = 4 h table 27 die temperature sensor parameters parameter symbol values unit note / test condition min. typ. max. temperature sensor range t sr sr -40 ? t le cc ? ? t j t oe cc ? ? t oe = t j - t dts v ddp v ddp_max = 3.63 v the typical offset error increases by an additional t oe =1c. measurement time t m cc ?? t tsst sr ?? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 59 v1.4, 2016-01 3.2.6 usb otg interface dc characteristics the universal serial bus (usb) interface is compliant to the usb rev. 2.0 specification and the otg specification rev. 1.3. high-speed mode is not supported. note: these parameters are not subject to production test, but verified by design and/or characterization. table 28 usb otg vbus and id parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. vbus input voltage range v in cc 0.0 ? v b1 cc 4.4 ?? v b2 cc 0.8 ? v b3 cc 0.8 ? v b4 cc 0.2 ? r vbus_in cc 40 ? r vbus_pu cc 281 ?? r vbus_pd cc 656 ?? r uid_pu cc 14 ? i vbus_in cc ?? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 60 v1.4, 2016-01 table 29 usb otg data line (usb_dp, usb_dm) parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. input low voltage v il sr ?? v ih sr 2.0 ?? v ihz sr 2.7 ? v dis cc 0.2 ?? v cm cc 0.8 ? v ol cc 0.0 ? v oh cc 2.8 ? r pui cc 900 ? r pua cc 1 425 ? r pd cc 14.25 ? z inp cc 300 ?? z drv cc 28 ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 61 v1.4, 2016-01 3.2.7 oscillator pins note: it is strongly recomm ended to measure the oscill ation allowance (negative resistance) in the final target system (layout) to determine th e optimal parameters for the oscillator operation. please refer to the limits specified by the crystal or ceramic resonator supplier. note: these parameters are not subject to production test, but verified by design and/or characterization. the oscillator pins can be operated with an external crystal (see figure 20 ) or in direct input mode (see figure 21 ). figure 20 oscillator in crystal mode xtal1 xtal2 f os c damping resistor may be needed for some crystals v ppx v ppx_min v ppx v ppx_max t v v ppx_min t os cs gnd subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 62 v1.4, 2016-01 figure 21 oscillator in direct input mode v v ihbx_max v ss t i n p u t h i g h v o l t a g e i n p u t l o w v o l t a g e i n p u t h i g h v o l t a g e xtal1 xtal2 not connected external clock source direct input mode v ihbx_min v ilbx_max v ilbx_min subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 63 v1.4, 2016-01 table 30 osc_xtal parameters parameter symbol values unit note / test condition min. typ. max. input frequency f osc sr 4 ? ? t oscs is defined from the moment the oscillator is enabled wih scu_oschpctrl.mode until the oscillations reach an amplitude at xtal1 of 0.4 * v ddp . 2) the external oscillator circuitry must be optimize d by the customer and check ed for negative resistance and amplitude as recommended and specified by crystal suppliers. t oscs cc ?? v ix sr -0.5 ? v ddp + 0.5 v input amplitude (peak- to-peak) at xtal1 2)3) 3) if the shaper unit is enabled and not bypassed. v ppx sr 0.4 v ddp ? v ddp + 1.0 v input high voltage at xtal1 4) 4) if the shaper unit is bypassed, dedicated dc-thresholds have to be met. v ihbx sr 1.0 ? v ddp + 0.5 v input low voltage at xtal1 4) v ilbx sr -0.5 ? i ilx1 cc -100 ? v ix v ddp subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 64 v1.4, 2016-01 table 31 rtc_xtal parameters parameter symbol values unit note / test condition min. typ. max. input frequency f osc sr ? ? t oscs is defined from the moment the oscillator is en abled by the user with scu_osculctrl.mode until the oscillations reach an amplitude at rtc_xtal1 of 400 mv. 2) the external oscillator circuitry must be optimize d by the customer and check ed for negative resistance and amplitude as recommended and specified by crystal suppliers. 3) for a reliable start of the oscillation in crystal mode it is required that v bat v bat voltage range. t oscs cc ?? v ix sr -0.3 ? v bat + 0.3 v input amplitude (peak- to-peak) at rtc_xtal1 2)4) 4) if the shaper unit is enabled and not bypassed. v ppx sr 0.4 ?? v ihbx sr 0.6 v bat ? v bat + 0.3 v input low voltage at rtc_xtal1 5) v ilbx sr -0.3 ? v bat v input hysteresis for rtc_xtal1 5)6) 6) hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. it can not be guaranteed that it suppresses switching due to external system noise. v hysx cc 0.1 v bat ? v bat <3.6v 0.03 v bat ? v bat <3.0v input leakage current at rtc_xtal1 i ilx1 cc -100 ? v ix v bat subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 65 v1.4, 2016-01 3.2.8 power supply current the total power supply current defined belo w consists of a leakage and a switching component. application relevant values are typically lowe r than those given in the following tables, and depend on the customer's system operat ing conditions (e.g. thermal connection or used application configurations). note: these parameters are not subject to production test, but verified by design and/or characterization. if not stated otherwise, the operating condi tions for the parameters in the following table are: v ddp = 3.3 v, t a = 25 o c table 32 power supply parameters parameter symbol values unit note / test condition min. typ. max. active supply current 1)10) peripherals enabled frequency: f cpu / f periph / f ccu in mhz i ddpa cc ? ? ? ? ? ? ? ? ? ? i ddpa cc ? ? ? ? f cpu / f periph / f ccu in mhz i ddpa cc ? ? ? ? ? ? ? ? ? ? f cpu / f periph / f ccu in mhz i ddps cc ? ? ? ? ? ? ? ? ? ? f cpu / f periph / f ccu in khz ? ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 66 v1.4, 2016-01 sleep supply current 4) peripherals disabled frequency: f cpu / f periph / f ccu in mhz i ddps cc ? ? ? ? ? ? ? ? ? ? f cpu / f periph / f ccu in khz ? ? f cpu / f periph / f ccu in mhz i ddpd cc ? ? ? ? ? ? f cpu / f periph / f ccu in khz ? ? i ddph cc ? ? v bat =3.3v ? ? v bat =2.4v ? ? v bat =2.0v hibernate supply current rtc off 8) i ddph cc ? ? v bat =3.3v ? ? v bat =2.4v ? ? v bat =2.0v worst case active supply current 9) i ddpa cc ?? v ddp =3.6v, t j =150 o c v dda power supply current i dda cc ??? i ddp current at porst low i ddp_porst cc ?? v ddp =3.6v, t j =150 o c power dissipation p diss cc ?? v ddp =3.6v, t j =150 o c wake-up time from sleep to active mode t ssa cc ? ? table 32 power supply parameters parameter symbol values unit note / test condition min. typ. max. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 67 v1.4, 2016-01 wake-up time from deep sleep to active mode ??? section 3.2.9 wake-up time from hibernate mode ??? section 3.3.2 1) cpu executing code from flash, all peripherals idle. 2) cpu executing code from flash. 3) cpu in sleep, all peripherals idle, flash in active mode. 4) cpu in sleep, flash in active mode. 5) cpu in sleep, peripherals disabled, after wake-up code execution from ram. 6) to wake-up the flash from its sleep mode, f cpu f sys = 120 mhz, cpu executing benchmark code from flash, all ccus in 100khz timer mode, all adc groups in continuous conversion mode, usics as spi in internal loop-back mode, can in 500khz internal loop-back mode, interrupt triggered dm a block transfers to parity protected rams and fce, dts measurements and fpu calculations. the power consumption of each custom er application will most probably be lower than this value, but must be evaluated separately. 10) i ddp decreases typically by approximately 6 ma when f sys decreases by 10 mhz, at constant t j 11) sum of currents of all active converters (adc and dac) table 32 power supply parameters parameter symbol values unit note / test condition min. typ. max. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 68 v1.4, 2016-01 3.2.9 flash memory parameters note: these parameters are not subject to production test, but verified by design and/or characterization. table 33 flash memory parameters parameter symbol values unit note / test condition min. typ. max. erase time per 256 kbyte sector t erp cc ? t erp cc ? t erp cc ? t prp cc ? t fl_ersusp cc ?? t fl_margin del cc 10 ?? t wu cc ?? t a cc 22 ?? f cpu < t a wait states must be configured 2) 2) the following formula applies to the wait state configuration: fcon.wspflash f cpu ) t a . data retention time, physical sector 3)4) 3) storage and inactive time included. 4) values given are valid for an average weighted junction temperature of t j = 110c. t ret cc 20 ?? t retl cc 20 ?? t rtu cc 20 ?? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 69 v1.4, 2016-01 3.3 ac parameters 3.3.1 testing waveforms figure 22 rise/fall time parameters figure 23 testing waveform, output delay figure 24 testing waveform, output high impedance ac_rise-fall-times.vsd 10 % 90 % v ss v ddp t r t f 10% 90 % ac_testpoints.vsd v ddp / 2 v ddp / 2 v ddp v ss test points ac_highimp.vsd v load + 0.1v timing reference points v load -0.1v v oh -0.1v v ol + 0.1v subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 70 v1.4, 2016-01 3.3.2 power-up and supply monitoring porst is always asserted when v ddp and/or v ddc violate the respective thresholds. note: these parameters are not subject to production test, but verified by design and/or characterization. figure 25 porst circuit table 34 supply monitoring parameters parameter symbol values unit note / test condition min. typ. max. digital supply voltage reset threshold v por cc 2.79 1) 1) minimum threshold for reset assertion. ? v pv cc ?? v ddp voltage to ensure defined pad states v ddppa cc ? ? t pr sr ?? t ssw cc ? v ddc ramp up time t vcr cc ? ? v por or v pv v ddp porst gnd poreset v ddp gnd xmc4000 r porst (optional) external reset trigger supply monitoring i ppd subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 71 v1.4, 2016-01 figure 26 power-up behavior 3.3.3 power sequencing while starting up and shutting down as well as when switching power modes of the system it is important to limi t the current load steps. a typi cal cause for such load steps is changing the cpu frequency f cpu . load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor. note: these parameters are not subject to production test, but verified by design and/or characterization. 2) maximum threshold for reset deassertion. 3) the v ddp monitoring has a typical hysteresis of v porhys =180mv. 4) if t pr is not met, low spikes on porst may be seen during start up (e.g. reset pulses generated by the supply monitoring due to a slow ramping v ddp ). as programmed v por v pv v ddp v ddc pads porst v d d ppa undefined high - impedance or pull - device active 3.3 v 1.3 v t ssw t vcr t pr subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 72 v1.4, 2016-01 positive load step examples system assumptions: f cpu = f sys , target frequency f cpu = 120 mhz, main pll f vco = 480 mhz, stepping done by k2 divider, t plss between individual steps: 24 mhz - 48 mhz - 68 mhz - 96 mhz - 120 mhz (k2 steps 20 - 10 - 7 - 5 - 4) 24 mhz - 68 mhz - 96 mhz - 120 mhz (k2 steps 20 - 7 - 5 - 4) 24 mhz - 68 mhz - 120 mhz (k2 steps 20 - 7 - 4) table 35 power sequencing parameters parameter symbol values unit note / test condition min. typ. max. positive load step current i pls sr - ? v ddp t i nls sr - ? v ddp t v ddc voltage over- / undershoot from load step v ls cc - ? t plss sr 50 ? t nlss sr 100 ? v ddc c ext sr - 10 - c = 100 nf capacitor on each v ddc pin subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 73 v1.4, 2016-01 3.3.4 phase locked loop (pll) characteristics note: these parameters are not subject to production test, but verified by design and/or characterization. main and usb pll table 36 pll parameters parameter symbol values unit note / test condition min. typ. max. accumulated jitter d p cc ?? f sys =120mhz duty cycle 1) 1) 50% for even k2 divider values, 50(10/k2) for odd k2 divider values. d dc cc 46 50 54 % low pulse to total period, assuming an ideal input clock source pll base frequency f pllbase cc 30 ? f ref cc 4 ? f vco cc 260 ? t l cc ?? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 74 v1.4, 2016-01 3.3.5 internal clock source characteristics note: these parameters are not subject to production test, but verified by design and/or characterization. fast internal clock source table 37 fast internal clock parameters parameter symbol values unit note / test condition min. typ. max. nominal frequency f ofinc cc ? ? ? ? f ofi cc -0.5 ? v ddp supply voltage. -15 ? v ddp =3.3v -25 ? v ddp =3.3v -7 ? v ddp v ddp voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency. start-up time t ofis cc ? ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 75 v1.4, 2016-01 slow internal clock source table 38 slow internal clock parameters parameter symbol values unit note / test condition min. typ. max. nominal frequency f osi cc ? ? f osi cc -4 ? v bat = const. 0c t a ? v bat = const. t a < t a > ? v bat , t a =25c -10 ? v bat <2.4v, t a =25c start-up time t osis cc ? ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 76 v1.4, 2016-01 3.3.6 jtag interface timing the following parameters are applicable for communication through the jtag debug interface. the jtag module is fu lly compliant with ieee1149.1-2000. note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply. table 39 jtag interface timing parameters parameter symbol values unit note / test condition min. typ. max. tck clock period t 1 sr 25 ? ? ns tck high time t 2 sr 10 ? ? ns tck low time t 3 sr 10 ? ? ns tck clock rise time t 4 sr??4ns tck clock fall time t 5 sr??4ns tdi/tms setup to tck rising edge t 6 sr6??ns tdi/tms hold after tck rising edge t 7 sr6??ns tdo valid after tck falling edge 1) (propagation delay) 1) the falling edge on tck is used to generate the tdo timing. t 8 cc??13nsc l =50pf 3??nsc l =20pf tdo hold after tck falling edge 1) t 18 cc2??ns tdo high imped. to valid from tck falling edge 1)2) 2) the setup time for tdo is given implicitly by the tck cycle time. t 9 cc??14nsc l =50pf tdo valid to high imped. from tck falling edge 1) t 10 cc ? ? 13.5 ns c l =50pf subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 77 v1.4, 2016-01 figure 27 test clock timing (tck) figure 28 jtag timing jtag_tck .vsd 0.9 v ddp 0.5 v ddp tck t 1 t 2 0.1 v ddp t 3 t 5 t 4 jtag_io.vsd t 6 t 7 t 6 t 7 t 9 t 8 t 10 tck tms tdi tdo t 18 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 78 v1.4, 2016-01 3.3.7 serial wire debug port (sw-dp) timing the following parameters are applicable for communication through the sw-dp interface. note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply. figure 29 swd timing table 40 swd interface timing parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. swdclk clock period t sc sr 25 ? ? ns c l =30pf 40 ? ? ns c l =50pf swdclk high time t 1 sr 10 ? 500000 ns swdclk low time t 2 sr 10 ? 500000 ns swdio input setup to swdclk rising edge t 3 sr 6 ? ? ns swdio input hold after swdclk rising edge t 4 sr 6 ? ? ns swdio output valid time after swdclk rising edge t 5 cc ? ? 17 ns c l =50pf ? ? 13 ns c l =30pf swdio output hold time from swdclk rising edge t 6 cc 3 ? ? ns swdclk swdio (output) t 1 t 2 t 6 t 5 t sc swdio (input) t 3 t 4 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 79 v1.4, 2016-01 3.3.8 embedded trace macro cell (etm) timing the data timing refers to the active clock edge. the xmc4500 etm uses the half-rate clocking mode. in this mode both, the rising and falling clock edges are active clock edges. note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply, with c l 15 pf. figure 30 etm clock timing figure 31 etm data timing table 41 etm interface timing parameters parameter symbol values unit note / test condition min. typ. max. traceclk period t 1 cc 16.7 ? ? ns ? traceclk high time t 2 cc 2 ? ? ns ? traceclk low time t 3 cc 2 ? ? ns ? traceclk and tracedata rise time t 4 cc ? ? 3 ns ? traceclk and tracedata fall time t 5 cc ? ? 3 ns ? tracedata output valid time t 6 cc -2 ? 3 ns ? traceclk t 1 t 2 t 3 t 4 t 5 traceclk tracedata t 6 t 6 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 80 v1.4, 2016-01 3.3.9 peripheral timing 3.3.9.1 delta-sigma demodula tor digital in terface timing the following parameters are applicable for th e digital interface of the delta-sigma demodulator (dsd). the data timing is relative to the active clock edge. depending on the operation mode of the connected modulator that can be the rising and falling clock edge. note: these parameters are not subject to production test, but verified by design and/or characterization. table 42 dsd interfa ce timing parameters parameter symbol values unit note / test condition min. typ. max. mclk period in master mode t 1 cc 33.3 ? ? ns t 1 t periph 1) 1) t periph =1/ f periph mclk high time in master mode t 2 cc 9 ? ? ns t 2 > t periph 1) mclk low time in master mode t 3 cc 9 ? ? ns t 3 > t periph 1) mclk period in slave mode t 1 sr 33.3 ? ? ns t 1 t periph 1) mclk high time in slave mode t 2 sr t periph ??ns 1) mclk low time in slave mode t 3 sr t periph ??ns 1) din input setup time to the active clock edge t 4 sr t periph +4 ??ns 1) din input hold time from the active clock edge t 5 sr t periph +3 ??ns 1) subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 81 v1.4, 2016-01 figure 32 dsd data timing 3.3.9.2 synchronous serial interface (usic ssc) timing the following parameters are applicable for a usic channel operated in ssc mode. note: these parameters are not subject to production test, but verified by design and/or characterization. table 43 usic ssc master mode timing parameter symbol values unit note / test condition min. typ. max. sclkout master clock period t clk cc 33.3 ?? t 1 cc t pb - 6.5 1) 1) t pb = 1 / f pb ?? t 2 cc t pb - 8.5 1) ?? t 3 cc -6 ? t 4 sr 23 ?? t 5 sr 1 ?? t 2 t 3 t 5 t 4 t 1 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 82 v1.4, 2016-01 table 44 usic ssc slave mode timing parameter symbol values unit note / test condition min. typ. max. dx1 slave clock period t clk sr 66.6 ?? t 10 sr 3 ?? t 11 sr 4 ?? t 12 sr 6 ?? t 13 sr 4 ?? t 14 cc 0 ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 83 v1.4, 2016-01 figure 33 usic - ssc master/slave mode timing note: this timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted. t 2 t 1 usic_ssc_tmgx.vsd clock output sclkout data output dout[3:0] t 3 t 3 t 5 data valid t 4 fi rs t trans mi t edge data input dx0/dx[5:3] select output selox active master mode timing slave mode timing t 11 t 10 clock input dx1 data output dout[3:0] t 14 t 14 data valid data input dx0/dx[5:3] select input dx2 active t 13 t 12 transmit edge: with this clock edge , transmit data is shifted to transmit data output . receive edge: with this clock edge , receive data at receive data input is latched . receive edge last receive edge inactive inactive transmit edge inactive inactive first transmit edge receive edge transmit edge last receive edge t 5 data valid t 4 data valid t 12 t 13 drawn for brgh .sclkcfg = 00 b . also valid for for sclkcfg = 01 b with inverted sclkout signal. subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 84 v1.4, 2016-01 3.3.9.3 inter-ic (iic) interface timing the following parameters are applicable fo r a usic channel operated in iic mode. note: these parameters are not subject to production test, but verified by design and/or characterization. table 45 usic iic standard mode timing 1) 1) due to the wired-and configuration of an iic bus system, the port drivers of the scl and sda signal lines need to operate in open-drain mode. the high level on these lines must be held by an external pull-up device, approximalely 10 kohm for operation at 100 kbit/s, approximately 2 kohm for operation at 400 kbit/s. parameter symbol values unit note / test condition min. typ. max. fall time of both sda and scl t 1 cc/sr --300ns rise time of both sda and scl t 2 cc/sr - - 1000 ns data hold time t 3 cc/sr 0- - s data set-up time t 4 cc/sr 250 - - ns low period of scl clock t 5 cc/sr 4.7 - - s high period of scl clock t 6 cc/sr 4.0 - - s hold time for (repeated) start condition t 7 cc/sr 4.0 - - s set-up time for repeated start condition t 8 cc/sr 4.7 - - s set-up time for stop condition t 9 cc/sr 4.0 - - s bus free time between a stop and start condition t 10 cc/sr 4.7 - - s capacitive load for each bus line c b sr - - 400 pf subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 85 v1.4, 2016-01 table 46 usic iic fast mode timing 1) 1) due to the wired-and configuration of an iic bus system, the port drivers of the scl and sda signal lines need to operate in open-drain mode. the high level on these lines must be held by an external pull-up device, approximalely 10 kohm for operation at 100 kbit/s, approximately 2 kohm for operation at 400 kbit/s. parameter symbol values unit note / test condition min. typ. max. fall time of both sda and scl t 1 cc/sr 20 + 0.1*c b 2) 2) c b refers to the total capacitance of one bus line in pf. - 300 ns rise time of both sda and scl t 2 cc/sr 20 + 0.1*c b 2) - 300 ns data hold time t 3 cc/sr 0- - s data set-up time t 4 cc/sr 100 - - ns low period of scl clock t 5 cc/sr 1.3 - - s high period of scl clock t 6 cc/sr 0.6 - - s hold time for (repeated) start condition t 7 cc/sr 0.6 - - s set-up time for repeated start condition t 8 cc/sr 0.6 - - s set-up time for stop condition t 9 cc/sr 0.6 - - s bus free time between a stop and start condition t 10 cc/sr 1.3 - - s capacitive load for each bus line c b sr - - 400 pf subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 86 v1.4, 2016-01 figure 34 usic iic stand and fast mode timing 3.3.9.4 inter-ic sound (iis) interface timing the following parameters are applicable for a usic channel operated in iis mode. note: these parameters are not subject to production test, but verified by design and/or characterization. table 47 usic iis master transmitter timing parameter symbol values unit note / test condition min. typ. max. clock period t 1 cc 33.3 ?? t 2 cc 0.35 x t 1min ?? t 3 cc 0.35 x t 1min ?? t 4 cc 0 ?? t 5 cc ?? t 1min ns scl sda scl sda t 1 t 2 t 1 t 2 t 10 t 9 t 7 t 8 t 7 t 3 t 4 t 5 t 6 ps sr s 70% 30 % 9 th clock 9 th clock subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 87 v1.4, 2016-01 figure 35 usic iis master transmitter timing figure 36 usic iis slave receiver timing table 48 usic iis slave receiver timing parameter symbol values unit note / test condition min. typ. max. clock period t 6 sr 66.6 ?? t 7 sr 0.35 x t 6min ?? t 8 sr 0.35 x t 6min ?? t 9 sr 0.2 x t 6min ?? t 10 sr 0 ?? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 88 v1.4, 2016-01 3.3.9.5 sdmmc interface timing note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply, total external capacitive load c l = 40 pf. ac timing specifications (full-speed mode) table 49 sdmmc timing for full-speed mode parameter symbol values unit note/ test condition min. max. clock frequency in full speed transfer mode (1/ t pp ) f pp cc 0 24 mhz clock cycle in full speed transfer mode t pp cc 40 ? t wl cc 10 ? t wh cc 10 ? t tlh cc ? t thl cc ? t isu_f sr 2 ? t ih_f sr 2 ? t odly_f cc ? t oh_f cc 0 ? table 50 sd card bus timing for full-speed mode 1) parameter symbol values unit note/ test condition min. max. sd card input setup time t isu 5 ? t ih 5 ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 89 v1.4, 2016-01 full-speed output path (write) figure 37 full-speed output path full-speed write meeting setup (maximum delay) the following equations show how to calculate the allowed skew range between the sd_clk and sd_dat/cmd signals on the pcb. no clock delay: (1) sd card output valid time t odly ? t oh 0 ? table 50 sd card bus timing for full-speed mode 1) (cont?d) parameter symbol values unit note/ test condition min. max. sd clock at host pin sd clock at card pin output at host pins output at card pins t pp (clock cycle ) driving edge sampling edge t wl t clk_delay output valid time: t odly_h output hold time: t oh_h t data _delay + t tap_delay t isu t ih t odly_f t data_delay t tap_delay t isu +++ t wl < subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 90 v1.4, 2016-01 with clock delay: (2) (3) the data can be delayed versus clock up to 5 ns in ideal case of t wl = 20 ns. full-speed write meeting hold (minimum delay) the following equations show how to calculate the allowed skew range between the sd_clk and sd_dat/cmd signals on the pcb. (4) the clock can be delayed versus data up to 18. 2 ns (external delay line) in ideal case of t wl = 20 ns, with maximum t tap_delay = 3.2 ns programmed. t odly_f t data_delay t tap_delay t isu +++ t wl t clk_delay + < t data_delay t tap_delay t wl ++ t pp t clk_delay t isu ? t odly_f ? + < t data_delay t tap_delay 20 ++40 t clk_delay 5 ?10 ? + < t data_delay 5 t clk_delay t tap_delay ? + < t clk_delay t wl t oh_f t data_delay t tap_delay t ih ? ++ + < t clk_delay 20 t data_delay t tap_delay 5? ++ < t data_delay 15 t clk_delay t tap_delay ++ < subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 91 v1.4, 2016-01 full-speed inpu t path (read) figure 38 full-speed input path full-speed read meeting setup (maximum delay) the following equations show how to calcul ate the allowed combined propagation delay range of the sd_clk and sd_dat/cmd signals on the pcb. (5) the data + clock delay can be up to 4 ns for a 40 ns clock cycle. sd clock at host pin sd clock at card pin output at host pins output at card pins t pp (clock cycle ) driving edge sampling edge t clk_delay t odly t oh t data_delay + t tap_delay t ih _h t isu_h t clk_delay t data_delay t tap_delay t odly t isu_f + + + + 0,5 t pp < t clk_delay t data_delay + 0,5 t pp t odly t isu_f ?? t tap_delay ? < t clk_delay t data_delay + 20142 ?? t tap_delay ? < t clk_delay t data_delay +4 t tap_delay ? < subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 92 v1.4, 2016-01 full-speed read meeting hold (minimum delay) the following equations show how to calcul ate the allowed combined propagation delay range of the sd_clk and sd_dat/cmd signals on the pcb. (6) the data + clock delay must be greater than 2 ns if t tap_delay is not used. if the t tap_delay is programmed to at least 2 ns, t he data + clock delay must be greater than 0 ns (or less). this is always fulfilled. ac timing specifications (high-speed mode) table 51 sdmmc timing for high-speed mode parameter symbol values unit note/ test condition min. max. clock frequency in high speed transfer mode (1/ t pp ) f pp cc 0 48 mhz clock cycle in high speed transfer mode t pp cc 20 ? t wl cc 7 ? t wh cc 7 ? t tlh cc ? t thl cc ? t isu_h sr 2 ? t ih_h sr 2 ? t odly_h cc ? t oh_h cc 2 ? t clk_delay t oh t data_delay t tap_delay t ih_f > ++ + t clk_delay t data_delay t ih_f t oh ? t tap_delay ? > + t clk_delay t data_delay 2 t tap_delay ? > + subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 93 v1.4, 2016-01 high-speed output path (write) figure 39 high-speed output path high-speed write meetin g setup (maximum delay) the following equations show how to calculate the allowed skew range between the sd_clk and sd_dat/cmd signals on the pcb. table 52 sd card bus timing for high-speed mode 1) 1) reference card timing values for calculation examples . not subject to production test and not characterized. parameter symbol values unit note/ test condition min. max. sd card input setup time t isu 6 ? t ih 2 ? t odly ? t oh 2.5 ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 94 v1.4, 2016-01 no clock delay: (7) with clock delay: (8) (9) the data delay is less than the clock delay by at least 10 ns in the ideal case where t wl = 10 ns. high-speed write meeting hold (minimum delay) the following equations show how to calculate the allowed skew range between the sd_clk and sd_dat/cmd signals on the pcb. (10) the clock can be delayed versus data up to 13. 2 ns (external delay line) in ideal case of t wl = 10 ns, with maximum t tap_delay = 3.2 ns programmed. t odly_h t data_delay t tap_delay t isu +++ t wl < t odly_h t data_delay t tap_delay t isu +++ t wl t clk_delay + < t data_delay t tap_delay t clk_delay ? + t wl t isu ? t odly_h ? < t data_delay t clk_delay ? t wl t isu ? t odly_h ? t tap_delay ? < t data_delay t clk_delay ?1 0 6 ?14 ? t tap_delay ? < t data_delay t clk_delay ?1 0 ? t tap_delay ? < t clk_delay t wl t oh_h t data_delay t tap_delay t ih ? ++ + < t clk_delay t data_delay ? t wl t oh_h t tap_delay t ih ? ++ < t clk_delay t data_delay ?1 0 2 t tap_delay 2? ++ < t clk_delay t data_delay ?1 0 t tap_delay + < subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 95 v1.4, 2016-01 high-speed input path (read) figure 40 high-speed input path high-speed read meeting setup (maximum delay) the following equations show how to calcul ate the allowed combined propagation delay range of the sd_clk and sd_dat/cmd signals on the pcb. (11) the data + clock delay can be up to 4 ns for a 20 ns clock cycle. sd clock at host pin sd clock at card pin output at host pins output at card pins t pp (clock cycle) driving edge sampling edge t clk_delay t odly t oh t data_delay + t tap_delay t ih _h t isu_h t clk_delay t data_delay t tap_delay t odly t isu_h ++++ t pp < t clk_delay t data_delay + t pp t odly t isu_h ?? t tap_delay ? < t clk_delay t data_delay + 20142 ?? t tap_delay ? < t clk_delay t data_delay +4 t tap_delay ? < subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 96 v1.4, 2016-01 high-speed read meeting hold (minimum delay) the following equations show how to calcul ate the allowed combined propagation delay range of the sd_clk and sd_dat/cmd signals on the pcb. (12) the data + clock delay must be greater than -0.5 ns for a 20 ns clock cycle. this is always fulfilled. 3.3.10 ebu timing note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply, with class a2 pins and c l = 16 pf. 3.3.10.1 ebu asynchronous timing note: for each timing, the accumulated pll jitter must be added separately. table 53 common timing parameters for all asynchronous timings parameter sym bol limit values unit edge setting min. max. pulse width deviation from the ideal programmed width due to the a2 pad asymmetry, strong driver mode, rise delay - fall delay. c l = 16 pf. cc t a -1 1.5 ns sharp -2 1 medium ad(24:16) output delay to adv rising edge, multiplexed read / write cc t 13 -5.5 2 ? ad(24:16) output delay cc t 14 -5.5 2 ? t clk_delay t oh t data_delay t tap_delay t ih_h > > > > subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 97 v1.4, 2016-01 read timing table 54 asynchronous read timing, multiplexed and demultiplexed parameter symbol li mit values unit min. max. a(24:16) output delay to rd rising edge, deviation from the ideal programmed value. cc t 0 -2.5 2.5 ns a(24:16) output delay cc t 1 -2.5 2.5 cs rising edge cc t 2 -2 2.5 adv rising edge cc t 3 -1.5 4.5 bc rising edge cc t 4 -2.5 2.5 wait input setup sr t 5 12 ? wait input hold sr t 6 0? data input setup sr t 7 12 ? data input hold sr t 8 0? rd / w r output delay cc t 9 -2.5 1.5 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 98 v1.4, 2016-01 multiplexed read timing figure 41 multiplexed read access t 8 next addr. ebu_muxrd_async.vsd ad[31:0] 2) data in a[max:16] 1) t 2 t a t a t a t a t 4 t 5 t 6 t a t 13 t 14 t 7 t 9 ebu state address phase address hold phase (opt.) command phase recovery phase (opt.) new addr. phase 1...15 0...15 duration limits in ebu_clk cycles 1...31 0...15 1...15 t 1 t 0 pv + pv + pv + pv + pv + t 3 pv + pv + pv + pv + pv + pv + pv + pv = programmed value, t ebu_clk * sum (corresponding bitfield values) command delay phase 0...7 1) for 16-bit mux and twin 16-bit mux only 2) * 16-bit mux: - address a[15:0], data d[15:0] on pins ad[15:0] only * twin 16-bit mux: - address a[15:0] on pins ad[15:0] and ad[31:16] in parallel - data d[31:0] on pins ad[31:0] * 32-bit mux: - address a[24:0] on pins ad[24:0] - data d[31:0] on pins ad[31:0] address out valid address rd/wr bc[3:0] wait rd adv cs[3:0] cscomb subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 99 v1.4, 2016-01 demultiplexed read timing figure 42 demultiplexed read access t 8 next addr. ebu_demuxrd_async.vsd d[15:0] 2) data in a[max:0] 1) t 2 t a t a t a t a t 4 t 5 t 6 t a t 7 t 9 ebu state address phase address hold phase (opt.) command phase recovery phase (opt.) new addr. phase 1...15 0...15 duration limits in ebu_clk cycles 1...31 0...15 1...15 t 1 t 0 pv + pv + pv + pv + pv + t 3 pv + pv + pv + pv + pv + pv = programmed value, t ebu_clk * sum (corresponding bitfield values) 1) address a[max:16] on pins a[max:16], address a[15:0] on pins ad[31:16] 2) data d[15:0] on pins ad[15:0] valid address rd/wr bc[3:0] wait rd adv cs[3:0] cscomb subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 100 v1.4, 2016-01 write timing table 55 asynchronous write timing, multiplexed and demultiplexed parameter symbol limit values unit min. max. a(24:0) output delay to rd/wr rising edge, deviation from the ideal programmed value. cc t 30 -2.5 2.5 ns a(24:0) output delay cc t 31 -2.5 2.5 cs rising edge cc t 32 -2 2 adv rising edge cc t 33 -2 4.5 bc rising edge cc t 34 -2.5 2 wait input setup sr t 35 12 ? wait input hold sr t 36 0? data output delay cc t 37 -5.5 2 data output delay cc t 38 -5.5 2 rd / w r output delay cc t 39 -2.5 1.5 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 101 v1.4, 2016-01 multiplexed write timing figure 43 multiplexed write access t 34 next addr. ebu_muxwr_async.vsd ad[31:0] 2) data out a[max:16] 1) t a t a t a t a t 35 t 36 t a t 13 t 14 pv + t 37 ebu state address phase address hold phase (opt.) command phase recovery phase (opt.) new addr. phase 1...15 0...15 duration limits in ebu_clk cycles 0...15 1...15 t 31 t 30 pv + pv + pv + pv + pv + t 33 pv + pv + pv + pv + pv + pv = programmed value, t ebu_clk * sum (corresponding bitfield values) data hold phase 1...31 1) for 16-bit mux and twin 16-bit mux only 2) * 16-bit mux: - address a[15:0], data d[15:0] on pins ad[15:0] only * twin 16-bit mux: - address a[15:0] on pins ad[15:0] and ad[31:16] in parallel - data d[31:0] on pins ad[31:0] * 32-bit mux: - address a[24:0] on pins ad[24:0] - data d[31:0] on pins ad[31:0] t 32 pv + t 38 pv + address out 0...15 rd/wr bc[3:0] wait rd adv cs[3:0] cscomb valid address t 39 pv + subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 102 v1.4, 2016-01 demultiplexed write timing figure 44 demultiplexed write access t 34 next addr. ebu_demuxwr_async.vsd d[15:0] 2) data out a[max:0] 1) t a t a t a t a t 35 t 36 t a pv + t 37 t 39 ebu state address phase address hold phase (opt.) command phase recovery phase (opt.) new addr. phase 1...15 0...15 duration limits in ebu_clk cycles 0...15 1...15 t 31 t 30 pv + pv + pv + pv + pv + t 33 pv + pv + pv + pv + pv = programmed value, t ebu_clk * sum (corresponding bitfield values) data hold phase 1...31 t 32 pv + t 38 pv + 0...15 1) address a[max:16] on pins a[max:16], address a[15:0] on pins ad[31:16] 2) data d[15:0] on pins ad[15:0] rd/wr bc[3:0] wait rd adv cs[3:0] cscomb valid address subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 103 v1.4, 2016-01 3.3.10.2 ebu burst mode access timing note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply, with class a2 pins and c l = 16 pf. table 56 ebu burst mode read / write access timing parameters parameter symbol values unit note / test condition min. typ. max. output delay from bfclko rising edge t 10 cc -2 ? 2 ns ? rd and rd/wr active/inactive after bfclko active edge 1) 1) an active edge can be a rising or falling edge, depending on the settings of bits bfcon.ebse / ecse and the clock divider ratio. negative minimum values for these parameters mean that the last data read during a burst may be corrupted. however, with clock feedback enabled, this value is an oversampling not required for the internal bus transaction, and will be discarded. t 12 cc -2 ? 2 ns ? cs x output delay from bfclko active edge 1) t 21 cc -2.5 ? 1.5 ns ? adv active/inactive after bfclko active edge 2) 2) this parameter is valid for busconx.ebse = 1 and busapx.extclk = 00 b . for busconx.ebse = 1 and other values of busapx.extcl k, adv and baa will be delayed by 1/2 of the internal bus clock period t cpu = 1 / f cpu . for busconx. ebse = 0 and busapx.extclk = 11 b , add 2 internal bus clock periods. for busconx. ebse = 0 and other values of busapx.extclk, add 1 internal bus clock period. t 22 cc -2 ? 2 ns ? baa active/inactive after bfclko active edge 2) t 22a cc -2.5 ? 1.5 ns ? data setup to bfclki rising edge 3) t 23 sr 3 ? ? ns ? data hold from bfclki rising edge 3) t 24 sr 0 ? ? ns ? wait setup (low or high) to bfclki rising edge 3) t 25 sr 3 ? ? ns ? wait hold (low or high) from bfclki rising edge 3) t 26 sr 0 ? ? ns ? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 104 v1.4, 2016-01 figure 45 ebu burst mode read / write access timing 3) if the clock feedback is not enabled, the input signals are latched using the internal clock in the same way as for asynchronous access. thus, t 5 , t 6 , t 7 and t 8 from the asynchronous timing apply. ebu_burstrdwr.vsd t 10 bfclki bfclko 1) a[max :0 ] t 22 address p hase (s) command phase(s) burst phase(s) recovery phase(s) next addr. phase(s) t 22 t 21 next addr . d[31:0] (32-bit) t 12 t 12 t 24 d[15:0] (16-bit) t 22a burst phase (s) t 22a t 10 t 22 t 23 t 24 t 23 t 26 t 25 output delays are always referenced to bclko . the reference clock for input characteristics depends on bit ebu _bfcon.fdbken. ebu_bfcon.fdbken = 0: bfclko is the input reference clock . ebu_bfcon.fdbken = 1: bfclki is the input reference clock (ebu clock feedback enabled ). 1) b urst start a ddress t 21 t 21 data (addr+0) data (addr+4) data (addr+2) data (addr+0) adv rd rd/wr cs[3:0] cscomb baa wait subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 105 v1.4, 2016-01 3.3.10.3 ebu arbitration signal timing note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply. figure 46 ebu arbitration signal timing table 57 ebu arbitration signal timing parameters parameter symbol values unit note / test cond ition min. typ. max. output delay from bfclko rising edge t 1 cc ? ? 16 ns c l = 50 pf data setup to bfclko falling edge t 2 sr 11 ? ? ns ? data hold from bfclko falling edge t 3 sr 2 ? ? ns ? t 2 t 2 ebu_arb .vsd bfclko t 3 t 1 t 1 t 1 t 1 hlda output breq output bfclko t 3 hold input hlda input subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 106 v1.4, 2016-01 3.3.10.4 ebu sdram access timing note: these parameters are not subject to production test, but verified by design and/or characterization. note: operating conditions apply, with class a2 pins and c l = 16 pf. figure 47 ebu sdram access clkout timing table 58 ebu sdram access sdclko signal timing parameters parameter symbol values unit note / test con dition min. typ. max. sdclko period t 1 cc 12.5 ? ? ns ? sdclko high time t 2 sr 5.5 ? ? ns ? sdclko low time t 3 sr 3.75 ? ? ns ? sdclko rise time t 4 sr ? ? 3.0 ns ? sdclko fall time t 5 sr ? ? 3.0 ns ? ebu_sdclko.vsd 0.9 v ddp 0.5 v ddp sdclko t 1 t 2 0.1 v ddp t 3 t 5 t 4 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 107 v1.4, 2016-01 table 59 ebu sdram access signal timing parameters parameter symbol limit values unit min. max. a(15:0) output valid from sdclko low-to-high transition cc t 6 ?9ns a(15:0) output hold cc t 7 3? cs(3:0) low cc t 8 ?9 cs(3:0) high cc t 9 3? ras low cc t 10 ?9 ras high sr t 11 3? cas low sr t 12 ?9 cas high cc t 13 3? rd/wr low cc t 14 ?9 rd/wr high cc t 15 3? bc(3:0) low cc t 16 ?9 bc(3:0) high cc t 17 3? d(15:0) output valid cc t 18 ?9 d(15:0) output hold cc t 19 3? cke output valid 1) 1) not depicted in the read and write access timing figures below. cc t 22 ?7 cke output hold 1) cc t 23 2? d(15:0) input hold sr t 21 3? d(15:0) input setup to sdclko low-to-high transition sr t 20 4? subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 108 v1.4, 2016-01 figure 48 ebu sdram read access timing t 21 row ebu_sdram-rd.vsd t 6 column t 7 t 12 t 13 t 16 t 17 t 20 data (0) data (n-1) d[15:0] 2) a[15 :0] 1) rd /wr b c[1 :0 ] cs [3 :0 ] cscomb ras cas 1) a ddress a[15 :0 ] on pins ad [31 :16 ] 2) data d[15:0] on pins ad[15:0] sdclko t 9 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 109 v1.4, 2016-01 figure 49 ebu sdram write access timing column t 19 row ebu_sdram- wr.vsd t 6 t 7 t 8 t 9 t 10 t 11 t 12 t 13 t 14 t 15 t 16 t 17 t 18 data (0) data (n-1 ) d[15:0] 2) a[15 :0] 1) rd /wr b c[1 :0 ] cs [3 :0 ] cscomb ras cas 1) a ddress a[15 :0 ] on pins ad [31 :16 ] 2) data d[15:0] on pins ad[15:0] sdclko subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 110 v1.4, 2016-01 3.3.11 usb interface characteristics the universal serial bus (usb) interface is compliant to the usb rev. 2.0 specification and the otg specification rev. 1.3. high-speed mode is not supported. note: these parameters are not subject to production test, but verified by design and/or characterization. figure 50 usb signal timing table 60 usb timing parameters (operating conditions apply) parameter symbol values unit note / test condition min. typ. max. rise time t r cc 4 ? 20 ns c l =50pf fall time t f cc 4 ? 20 ns c l =50pf rise/fall time matching t r /t f cc 90 ? 111.11 % c l =50pf crossover voltage v crs cc 1.3 ? 2.0 v c l =50pf usb_rise-fall-times.vsd 10% 90 % d- d+ t r t f 10 % 90% v crs v ss subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 111 v1.4, 2016-01 3.3.12 ethernet interface (eth) characteristics for proper operation of the ethernet interface it is required that f sys note: these parameters are not subject to production test, but verified by design and/or characterization. 3.3.12.1 eth measurement reference points figure 51 eth measurement reference points eth_testpoints.vsd eth clock 1.4 v 1.4 v 2.0 v 0.8 v 2.0 v 0.8 v t r t f eth i/o subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 112 v1.4, 2016-01 3.3.12.2 eth management signal parameters (eth_mdc, eth_mdio) figure 52 eth management signal timing table 61 eth management signal timing parameters parameter symbol values unit note / test conditi on min. typ. max. eth_mdc period t 1 cc 400 ? ? ns c l =25pf eth_mdc high time t 2 cc 160 ? ? ns eth_mdc low time t 3 cc 160 ? ? ns eth_mdio setup time (output) t 4 cc 10 ? ? ns eth_mdio hold time (output) t 5 cc 10 ? ? ns eth_mdio data valid (input) t 6 sr 0 ? 300 ns eth_timing-mgmt.vsd eth_mdc eth_mdio (output) t 5 valid data t 4 valid data t 6 eth_mdio (input) eth_mdc eth_mdio sourced by sta: eth_mdio sourced by phy: eth_mdc t 1 t 3 t 2 subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 113 v1.4, 2016-01 3.3.12.3 eth mii parameters in the following, the parameters of the mi i (media independent interface) are described. figure 53 eth mii signal timing table 62 eth mii signal timing parameters parameter symbol values unit note / test condition min. typ. max. clock period, 10 mbps t 7 sr 400 ? ? ns c l =25pf clock high time, 10 mbps t 8 sr 140 ? 260 ns clock low time, 10 mbps t 9 sr 140 ? 260 ns clock period, 100 mbps t 7 sr 40 ? ? ns clock high time, 100 mbps t 8 sr 14 ? 26 ns clock low time, 100 mbps t 9 sr 14 ? 26 ns input setup time t 10 sr 10 ? ? ns input hold time t 11 sr 10 ? ? ns output valid time t 12 cc 0 ? 25 ns eth_timing-mii.vsd eth_mii_rx_clk eth_mii _txd[3:0] eth_mii_txen eth_mii_rxd[3:0] eth_mii_rx_dv eth_mii _rx_er eth_mii_tx_clk t 11 valid data t 10 valid data t 12 (sourced by sta ) ( sourced by phy ) t 7 t 9 t 8 eth_mii_rx_clk eth_mii_tx_clk subject to agreement on the use of product information
xmc4500 xmc4000 family electrical parameters data sheet 114 v1.4, 2016-01 3.3.12.4 eth rmii parameters in the following, the parameters of the rmii (reduced media independent interface) are described. figure 54 eth rmii signal timing table 63 eth rmii signal timing parameters parameter symbol values unit note / test condit ion min. typ. max. eth_rmii_ref_cl clock period t 13 sr 20 ? ? ns c l =25pf; 50 ppm eth_rmii_ref_cl clock high time t 14 sr 7 ? 13 ns c l =25pf eth_rmii_ref_cl clock low time t 15 sr 7 ? 13 ns eth_rmii_rxd[1:0], eth_rmii_crs setup time t 16 sr 4 ? ? ns eth_rmii_rxd[1:0], eth_rmii_crs hold time t 17 sr 2 ? ? ns eth_rmii_txd[1:0], eth_rmii_txen data valid t 18 cc 4 ? 15 ns eth_timing-rmii .vsd eth_rmii_ref_cl t 17 valid data t 16 valid data t 18 t 13 t 15 t 14 eth_rmii_ref_cl eth_rmii_ref_cl eth_rmii _rxd[1:0] eth_rmii _crs eth_rmii _txd[1:0] eth_rmii _txen (sourced by sta ) (sourced by phy ) valid data subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 115 v1.4, 2016-01 4 package and reliability the xmc4500 is a member of the xmc4000 family of microcontrollers. it is also compatible to a certain extent with me mbers of similar families or subfamilies. each package is optimized for the device it houses. therefore, there may be slight differences between packages of the same pi n-count but for different device types. in particular, the size of the exposed die pad may vary. if different device types are considered or planned for an applicati on, it must be ensured that the board layout fits all packages under consideration. 4.1 package parameters table 64 provides the thermal characteristi cs of the packages used in xmc4500. note: for electrical reasons, it is required to connect the exposed pad to the board ground v ss , independent of emc and thermal requirements. 4.1.1 thermal considerations when operating the xmc4500 in a system, the to tal heat generated in the chip must be dissipated to the ambient environment to pr event overheating and the resulting thermal damage. the maximum heat that can be dissipated dep ends on the package and its integration into the target board. the ?thermal resistance r table 64 thermal characteristics of the packages parameter symbol limit values unit package types min. max. exposed die pad dimensions (including u- groove where applicable) ex t j r subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 116 v1.4, 2016-01 power dissipation must be limited so that the average junction temperature does not exceed 150 c. the difference between junction temperature and ambient temperature is determined by p int + p iostat + p iodyn ) r p int = v ddp i ddp (switching current and leakage current). the static external power consumption caus ed by the output drivers is defined as p iostat = v ddp - v oh ) i oh ) + v ol i ol ) the dynamic external power consumpt ion caused by the output drivers ( p iodyn ) depends on the capacitive load connected to the resp ective pins and their switching frequencies. if the total power di ssipation for a given system configur ation exceeds the defined limit, countermeasures must be taken to ensure proper system operation: ? reduce v ddp , if possible in the system ? reduce the system frequency ? reduce the number of output pins ? reduce the load on active output drivers subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 117 v1.4, 2016-01 4.2 package outlines figure 55 pg-lqfp-144-18 (plastic green low profile quad flat package) table 65 differences pg-lqfp-14-18 to pg-lqfp-144-24 change pg-lqfp-144-18 pg-lqfp-144-24 thermal resistance junction ambient ( r subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 118 v1.4, 2016-01 figure 56 pg-lqfp-144-24 (plastic green low profile quad flat package) 1) does not include plastic or metal protrusion of 0.25 max. per side 2) does not include dambar protrusion 3) refer table for exposed pad dimension bottom view 0.5 35 x 0.5 = 17.5 +0.07 -0.03 0.2 144x cda-b m 0.08 c 0.08 1.6 max. 1.4 0.05 0.1 0.05 d 20 1) 2) 3) 3) 3) 3) a-b0.2 dh 4x 22 a-b 0.2 dc c 144x b a 20 1) 22 1 144 ex ax ay index marking index marking 1 exposed diepad 144 144x 0.15 0.6 h 0.127 -0.037 +0.073 pg-lqfp-144-22-po v04 0...7 seating plane coplanarity stand off ey subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 119 v1.4, 2016-01 figure 57 pg-lqfp-100-11 (plastic green low profile quad flat package) table 66 differences pg-lqfp-100-11 to pg-lqfp-100-24 change pg-lqfp-100-11 pg-lqfp-100-25 thermal resistance junction ambient ( r 1) does not include plastic or metal protrusion of 0.25 max. per side pg-lqfp-100-3, -4, -8, -11-po v14 0.5 24 x 0.5 = 12 0.22 a-b 0.08 m c c d 100x 100x 0.05 1.6 max. 0.05 0.05 c 0.1 0.08 1.4 0.15 0.6 h a b index marking 1 100 d 14 1) 16 0.2 a-b d 100x 4x d a-b 0.2 h 14 1) 16 bottom view 100 1 exposed diepad ey ex seating plane coplanarity stand off -0.06 +0.05 0.15 0...7 subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 120 v1.4, 2016-01 figure 58 pg-lqfp-100-25 (plastic green low profile quad flat package) pg-lqfp-100-24, -25-po v04 0.5 24 x 0.5 = 12 0.2 a-b 0.08 m c c d 100x 100x -0.03 +0.07 2) 1.6 max. 0.05 0.05 c 0.1 0.08 1.4 0.15 0.6 h a b index marking 1 100 d 14 1) 16 0.2 c a-b d 0.2 h a-b d 100x 4x 14 1) 16 bottom view 100 1 exposed diepad seating plane coplanarity stand off -0.037 +0.073 0.127 0...7 3) ex 3) ax 3) ey 3) ay 1) does not include plastic or metal protrusion of 0.25 max. per side 2) does not include dambar protrusion of 0.08 max. per side 3) refer table for exposed pad dimension details subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 121 v1.4, 2016-01 figure 59 pg-lfbga-144-10 (plastic green low profile fine pitch ball grid array) all dimensions in mm. you can find complete information about infineon packages, packing and marking in our infineon internet page ?packages?: http://www.infineon.com/packages subject to agreement on the use of product information
xmc4500 xmc4000 family package and reliability data sheet 122 v1.4, 2016-01 4.3 quality declarations the qualification of the xm c4500 is executed according to the jedec standard jesd47h. note: for automotive applications refer to the infineon automotiv e microcontrollers. table 67 quality parameters parameter symbol values unit note / test condition min. typ. max. operation lifetime t op cc 20 ?? t j v hbm sr ?? v cdm sr ?? msl cc ?? ? t sdr sr ?? subject to agreement on the use of product information
www.infineon.com published by infineon technologies ag


▲Up To Search▲   

 
Price & Availability of XMC4500-F100X1024

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X